Local stability of ground states in locally gapped and weakly interacting quantum spin systems
Henheik SJ, Teufel S, Wessel T. 2022. Local stability of ground states in locally gapped and weakly interacting quantum spin systems. Letters in Mathematical Physics. 112(1), 9.
Download
Journal Article
| Published
| English
Scopus indexed
Author
Henheik, Sven JoschaISTA ;
Teufel, Stefan;
Wessel, Tom
Department
Abstract
Based on a result by Yarotsky (J Stat Phys 118, 2005), we prove that localized but otherwise arbitrary perturbations of weakly interacting quantum spin systems with uniformly gapped on-site terms change the ground state of such a system only locally, even if they close the spectral gap. We call this a strong version of the local perturbations perturb locally (LPPL) principle which is known to hold for much more general gapped systems, but only for perturbations that do not close the spectral gap of the Hamiltonian. We also extend this strong LPPL-principle to Hamiltonians that have the appropriate structure of gapped on-site terms and weak interactions only locally in some region of space. While our results are technically corollaries to a theorem of Yarotsky, we expect that the paradigm of systems with a locally gapped ground state that is completely insensitive to the form of the Hamiltonian elsewhere extends to other situations and has important physical consequences.
Publishing Year
Date Published
2022-01-18
Journal Title
Letters in Mathematical Physics
Publisher
Springer Nature
Acknowledgement
J. H. acknowledges partial financial support by the ERC Advanced Grant “RMTBeyond” No. 101020331. S. T. thanks Marius Lemm and Simone Warzel for very helpful comments and discussions and Jürg Fröhlich for references to the literature. Open Access funding enabled and organized by Projekt DEAL.
Volume
112
Issue
1
Article Number
9
ISSN
eISSN
IST-REx-ID
Cite this
Henheik SJ, Teufel S, Wessel T. Local stability of ground states in locally gapped and weakly interacting quantum spin systems. Letters in Mathematical Physics. 2022;112(1). doi:10.1007/s11005-021-01494-y
Henheik, S. J., Teufel, S., & Wessel, T. (2022). Local stability of ground states in locally gapped and weakly interacting quantum spin systems. Letters in Mathematical Physics. Springer Nature. https://doi.org/10.1007/s11005-021-01494-y
Henheik, Sven Joscha, Stefan Teufel, and Tom Wessel. “Local Stability of Ground States in Locally Gapped and Weakly Interacting Quantum Spin Systems.” Letters in Mathematical Physics. Springer Nature, 2022. https://doi.org/10.1007/s11005-021-01494-y.
S. J. Henheik, S. Teufel, and T. Wessel, “Local stability of ground states in locally gapped and weakly interacting quantum spin systems,” Letters in Mathematical Physics, vol. 112, no. 1. Springer Nature, 2022.
Henheik SJ, Teufel S, Wessel T. 2022. Local stability of ground states in locally gapped and weakly interacting quantum spin systems. Letters in Mathematical Physics. 112(1), 9.
Henheik, Sven Joscha, et al. “Local Stability of Ground States in Locally Gapped and Weakly Interacting Quantum Spin Systems.” Letters in Mathematical Physics, vol. 112, no. 1, 9, Springer Nature, 2022, doi:10.1007/s11005-021-01494-y.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
File Name
2022_LettersMathPhys_Henheik.pdf
357.55 KB
Access Level
Open Access
Date Uploaded
2022-01-19
MD5 Checksum
7e8e69b76e892c305071a4736131fe18
Export
Marked PublicationsOpen Data ISTA Research Explorer
Web of Science
View record in Web of Science®Sources
arXiv 2106.13780