Strong-field ionization via a high-order Coulomb-corrected strong-field approximation
Klaiber M, Daněk J, Yakaboylu E, Hatsagortsyan K, Keitel C. 2017. Strong-field ionization via a high-order Coulomb-corrected strong-field approximation. Physical Review A - Atomic, Molecular, and Optical Physics. 95(2), 023403.
Download (ext.)
https://arxiv.org/abs/1609.07018
[Submitted Version]
Journal Article
| Published
| English
Scopus indexed
Author
Klaiber, Michael;
Daněk, Jiří;
Yakaboylu, EnderalpISTA ;
Hatsagortsyan, Karen;
Keitel, Christoph
Department
Abstract
Signatures of the Coulomb corrections in the photoelectron momentum distribution during laser-induced ionization of atoms or ions in tunneling and multiphoton regimes are investigated analytically in the case of a one-dimensional problem. A high-order Coulomb-corrected strong-field approximation is applied, where the exact continuum state in the S matrix is approximated by the eikonal Coulomb-Volkov state including the second-order corrections to the eikonal. Although without high-order corrections our theory coincides with the known analytical R-matrix (ARM) theory, we propose a simplified procedure for the matrix element derivation. Rather than matching the eikonal Coulomb-Volkov wave function with the bound state as in the ARM theory to remove the Coulomb singularity, we calculate the matrix element via the saddle-point integration method by time as well as by coordinate, and in this way avoiding the Coulomb singularity. The momentum shift in the photoelectron momentum distribution with respect to the ARM theory due to high-order corrections is analyzed for tunneling and multiphoton regimes. The relation of the quantum corrections to the tunneling delay time is discussed.
Publishing Year
Date Published
2017-02-01
Journal Title
Physical Review A - Atomic, Molecular, and Optical Physics
Volume
95
Issue
2
Article Number
023403
ISSN
IST-REx-ID
Cite this
Klaiber M, Daněk J, Yakaboylu E, Hatsagortsyan K, Keitel C. Strong-field ionization via a high-order Coulomb-corrected strong-field approximation. Physical Review A - Atomic, Molecular, and Optical Physics. 2017;95(2). doi:10.1103/PhysRevA.95.023403
Klaiber, M., Daněk, J., Yakaboylu, E., Hatsagortsyan, K., & Keitel, C. (2017). Strong-field ionization via a high-order Coulomb-corrected strong-field approximation. Physical Review A - Atomic, Molecular, and Optical Physics. American Physical Society. https://doi.org/10.1103/PhysRevA.95.023403
Klaiber, Michael, Jiří Daněk, Enderalp Yakaboylu, Karen Hatsagortsyan, and Christoph Keitel. “Strong-Field Ionization via a High-Order Coulomb-Corrected Strong-Field Approximation.” Physical Review A - Atomic, Molecular, and Optical Physics. American Physical Society, 2017. https://doi.org/10.1103/PhysRevA.95.023403.
M. Klaiber, J. Daněk, E. Yakaboylu, K. Hatsagortsyan, and C. Keitel, “Strong-field ionization via a high-order Coulomb-corrected strong-field approximation,” Physical Review A - Atomic, Molecular, and Optical Physics, vol. 95, no. 2. American Physical Society, 2017.
Klaiber M, Daněk J, Yakaboylu E, Hatsagortsyan K, Keitel C. 2017. Strong-field ionization via a high-order Coulomb-corrected strong-field approximation. Physical Review A - Atomic, Molecular, and Optical Physics. 95(2), 023403.
Klaiber, Michael, et al. “Strong-Field Ionization via a High-Order Coulomb-Corrected Strong-Field Approximation.” Physical Review A - Atomic, Molecular, and Optical Physics, vol. 95, no. 2, 023403, American Physical Society, 2017, doi:10.1103/PhysRevA.95.023403.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Link(s) to Main File(s)
Access Level
Open Access
Export
Marked PublicationsOpen Data ISTA Research Explorer