Continuous and discrete radius functions on Voronoi tessellations and Delaunay mosaics

Biswas R, Cultrera di Montesano S, Edelsbrunner H, Saghafian M. 2022. Continuous and discrete radius functions on Voronoi tessellations and Delaunay mosaics. Discrete and Computational Geometry. 67, 811–842.

Download
OA 2022_DiscreteCompGeometry_Biswas.pdf 2.52 MB [Published Version]

Journal Article | Published | English

Scopus indexed

Corresponding author has ISTA affiliation

Department
Abstract
The Voronoi tessellation in Rd is defined by locally minimizing the power distance to given weighted points. Symmetrically, the Delaunay mosaic can be defined by locally maximizing the negative power distance to other such points. We prove that the average of the two piecewise quadratic functions is piecewise linear, and that all three functions have the same critical points and values. Discretizing the two piecewise quadratic functions, we get the alpha shapes as sublevel sets of the discrete function on the Delaunay mosaic, and analogous shapes as superlevel sets of the discrete function on the Voronoi tessellation. For the same non-critical value, the corresponding shapes are disjoint, separated by a narrow channel that contains no critical points but the entire level set of the piecewise linear function.
Publishing Year
Date Published
2022-04-01
Journal Title
Discrete and Computational Geometry
Publisher
Springer Nature
Acknowledgement
Open access funding provided by the Institute of Science and Technology (IST Austria).
Volume
67
Page
811-842
ISSN
eISSN
IST-REx-ID

Cite this

Biswas R, Cultrera di Montesano S, Edelsbrunner H, Saghafian M. Continuous and discrete radius functions on Voronoi tessellations and Delaunay mosaics. Discrete and Computational Geometry. 2022;67:811-842. doi:10.1007/s00454-022-00371-2
Biswas, R., Cultrera di Montesano, S., Edelsbrunner, H., & Saghafian, M. (2022). Continuous and discrete radius functions on Voronoi tessellations and Delaunay mosaics. Discrete and Computational Geometry. Springer Nature. https://doi.org/10.1007/s00454-022-00371-2
Biswas, Ranita, Sebastiano Cultrera di Montesano, Herbert Edelsbrunner, and Morteza Saghafian. “Continuous and Discrete Radius Functions on Voronoi Tessellations and Delaunay Mosaics.” Discrete and Computational Geometry. Springer Nature, 2022. https://doi.org/10.1007/s00454-022-00371-2.
R. Biswas, S. Cultrera di Montesano, H. Edelsbrunner, and M. Saghafian, “Continuous and discrete radius functions on Voronoi tessellations and Delaunay mosaics,” Discrete and Computational Geometry, vol. 67. Springer Nature, pp. 811–842, 2022.
Biswas R, Cultrera di Montesano S, Edelsbrunner H, Saghafian M. 2022. Continuous and discrete radius functions on Voronoi tessellations and Delaunay mosaics. Discrete and Computational Geometry. 67, 811–842.
Biswas, Ranita, et al. “Continuous and Discrete Radius Functions on Voronoi Tessellations and Delaunay Mosaics.” Discrete and Computational Geometry, vol. 67, Springer Nature, 2022, pp. 811–42, doi:10.1007/s00454-022-00371-2.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
Access Level
OA Open Access
Date Uploaded
2022-08-02
MD5 Checksum
9383d3b70561bacee905e335dc922680


Export

Marked Publications

Open Data ISTA Research Explorer

Web of Science

View record in Web of Science®

Search this title in

Google Scholar