10 Publications

Mark all

[10]
2024 |Published| Conference Paper | IST-REx-ID: 15093 | OA
Cultrera di Montesano, S., Edelsbrunner, H., Henzinger, M. H., & Ost, L. (2024). Dynamically maintaining the persistent homology of time series. In D. P. Woodruff (Ed.), Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) (pp. 243–295). Alexandria, VA, USA: Society for Industrial and Applied Mathematics. https://doi.org/10.1137/1.9781611977912.11
[Preprint] View | Files available | DOI | Download Preprint (ext.) | arXiv
 
[9]
2024 |Submitted| Preprint | IST-REx-ID: 15091 | OA
Cultrera di Montesano, S., Draganov, O., Edelsbrunner, H., & Saghafian, M. (n.d.). Chromatic alpha complexes. arXiv.
[Preprint] View | Files available | Download Preprint (ext.) | arXiv
 
[8]
2024 |Published| Journal Article | IST-REx-ID: 15380 | OA
Biswas, R., Cultrera di Montesano, S., Edelsbrunner, H., & Saghafian, M. (2024). Depth in arrangements: Dehn–Sommerville–Euler relations with applications. Journal of Applied and Computational Topology. Springer Nature. https://doi.org/10.1007/s41468-024-00173-w
[Published Version] View | Files available | DOI | Download Published Version (ext.)
 
[7]
2024 |Published| Thesis | IST-REx-ID: 15094 | OA
Cultrera di Montesano, S. (2024). Persistence and Morse theory for discrete geometric structures. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:15094
[Published Version] View | Files available | DOI
 
[6]
2023 |Epub ahead of print| Journal Article | IST-REx-ID: 13182 | OA
Biswas, R., Cultrera di Montesano, S., Edelsbrunner, H., & Saghafian, M. (2023). Geometric characterization of the persistence of 1D maps. Journal of Applied and Computational Topology. Springer Nature. https://doi.org/10.1007/s41468-023-00126-9
[Published Version] View | Files available | DOI
 
[5]
2022 |Published| Journal Article | IST-REx-ID: 10773 | OA
Biswas, R., Cultrera di Montesano, S., Edelsbrunner, H., & Saghafian, M. (2022). Continuous and discrete radius functions on Voronoi tessellations and Delaunay mosaics. Discrete and Computational Geometry. Springer Nature. https://doi.org/10.1007/s00454-022-00371-2
[Published Version] View | Files available | DOI | WoS
 
[4]
2022 |Submitted| Journal Article | IST-REx-ID: 11660 | OA
Biswas, R., Cultrera di Montesano, S., Edelsbrunner, H., & Saghafian, M. (n.d.). A window to the persistence of 1D maps. I: Geometric characterization of critical point pairs. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.
[Submitted Version] View | Files available
 
[3]
2022 |Submitted| Preprint | IST-REx-ID: 15090 | OA
Biswas, R., Cultrera di Montesano, S., Draganov, O., Edelsbrunner, H., & Saghafian, M. (n.d.). On the size of chromatic Delaunay mosaics. arXiv.
[Preprint] View | Files available | Download Preprint (ext.) | arXiv
 
[2]
2022 |Submitted| Journal Article | IST-REx-ID: 11658 | OA
Biswas, R., Cultrera di Montesano, S., Edelsbrunner, H., & Saghafian, M. (n.d.). Depth in arrangements: Dehn–Sommerville–Euler relations with applications. Leibniz International Proceedings on Mathematics. Schloss Dagstuhl - Leibniz Zentrum für Informatik.
[Submitted Version] View | Files available
 
[1]
2021 |Published| Conference Paper | IST-REx-ID: 9604 | OA
Biswas, R., Cultrera di Montesano, S., Edelsbrunner, H., & Saghafian, M. (2021). Counting cells of order-k voronoi tessellations in ℝ3 with morse theory. In Leibniz International Proceedings in Informatics (Vol. 189). Online: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2021.16
[Published Version] View | Files available | DOI
 

Search

Filter Publications

10 Publications

Mark all

[10]
2024 |Published| Conference Paper | IST-REx-ID: 15093 | OA
Cultrera di Montesano, S., Edelsbrunner, H., Henzinger, M. H., & Ost, L. (2024). Dynamically maintaining the persistent homology of time series. In D. P. Woodruff (Ed.), Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) (pp. 243–295). Alexandria, VA, USA: Society for Industrial and Applied Mathematics. https://doi.org/10.1137/1.9781611977912.11
[Preprint] View | Files available | DOI | Download Preprint (ext.) | arXiv
 
[9]
2024 |Submitted| Preprint | IST-REx-ID: 15091 | OA
Cultrera di Montesano, S., Draganov, O., Edelsbrunner, H., & Saghafian, M. (n.d.). Chromatic alpha complexes. arXiv.
[Preprint] View | Files available | Download Preprint (ext.) | arXiv
 
[8]
2024 |Published| Journal Article | IST-REx-ID: 15380 | OA
Biswas, R., Cultrera di Montesano, S., Edelsbrunner, H., & Saghafian, M. (2024). Depth in arrangements: Dehn–Sommerville–Euler relations with applications. Journal of Applied and Computational Topology. Springer Nature. https://doi.org/10.1007/s41468-024-00173-w
[Published Version] View | Files available | DOI | Download Published Version (ext.)
 
[7]
2024 |Published| Thesis | IST-REx-ID: 15094 | OA
Cultrera di Montesano, S. (2024). Persistence and Morse theory for discrete geometric structures. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:15094
[Published Version] View | Files available | DOI
 
[6]
2023 |Epub ahead of print| Journal Article | IST-REx-ID: 13182 | OA
Biswas, R., Cultrera di Montesano, S., Edelsbrunner, H., & Saghafian, M. (2023). Geometric characterization of the persistence of 1D maps. Journal of Applied and Computational Topology. Springer Nature. https://doi.org/10.1007/s41468-023-00126-9
[Published Version] View | Files available | DOI
 
[5]
2022 |Published| Journal Article | IST-REx-ID: 10773 | OA
Biswas, R., Cultrera di Montesano, S., Edelsbrunner, H., & Saghafian, M. (2022). Continuous and discrete radius functions on Voronoi tessellations and Delaunay mosaics. Discrete and Computational Geometry. Springer Nature. https://doi.org/10.1007/s00454-022-00371-2
[Published Version] View | Files available | DOI | WoS
 
[4]
2022 |Submitted| Journal Article | IST-REx-ID: 11660 | OA
Biswas, R., Cultrera di Montesano, S., Edelsbrunner, H., & Saghafian, M. (n.d.). A window to the persistence of 1D maps. I: Geometric characterization of critical point pairs. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.
[Submitted Version] View | Files available
 
[3]
2022 |Submitted| Preprint | IST-REx-ID: 15090 | OA
Biswas, R., Cultrera di Montesano, S., Draganov, O., Edelsbrunner, H., & Saghafian, M. (n.d.). On the size of chromatic Delaunay mosaics. arXiv.
[Preprint] View | Files available | Download Preprint (ext.) | arXiv
 
[2]
2022 |Submitted| Journal Article | IST-REx-ID: 11658 | OA
Biswas, R., Cultrera di Montesano, S., Edelsbrunner, H., & Saghafian, M. (n.d.). Depth in arrangements: Dehn–Sommerville–Euler relations with applications. Leibniz International Proceedings on Mathematics. Schloss Dagstuhl - Leibniz Zentrum für Informatik.
[Submitted Version] View | Files available
 
[1]
2021 |Published| Conference Paper | IST-REx-ID: 9604 | OA
Biswas, R., Cultrera di Montesano, S., Edelsbrunner, H., & Saghafian, M. (2021). Counting cells of order-k voronoi tessellations in ℝ3 with morse theory. In Leibniz International Proceedings in Informatics (Vol. 189). Online: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2021.16
[Published Version] View | Files available | DOI
 

Search

Filter Publications