Sebastiano Cultrera di Montesano
Graduate School
Edelsbrunner Group
10 Publications
2024 |Published| Conference Paper | IST-REx-ID: 15093 |
Cultrera di Montesano, S., Edelsbrunner, H., Henzinger, M. H., & Ost, L. (2024). Dynamically maintaining the persistent homology of time series. In D. P. Woodruff (Ed.), Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) (pp. 243–295). Alexandria, VA, USA: Society for Industrial and Applied Mathematics. https://doi.org/10.1137/1.9781611977912.11
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| arXiv
2024 |Submitted| Preprint | IST-REx-ID: 15091 |
Cultrera di Montesano, S., Draganov, O., Edelsbrunner, H., & Saghafian, M. (n.d.). Chromatic alpha complexes. arXiv.
[Preprint]
View
| Files available
| Download Preprint (ext.)
| arXiv
2024 |Published| Journal Article | IST-REx-ID: 15380 |
Biswas, R., Cultrera di Montesano, S., Edelsbrunner, H., & Saghafian, M. (2024). Depth in arrangements: Dehn–Sommerville–Euler relations with applications. Journal of Applied and Computational Topology. Springer Nature. https://doi.org/10.1007/s41468-024-00173-w
[Published Version]
View
| Files available
| DOI
| Download Published Version (ext.)
2024 |Published| Thesis | IST-REx-ID: 15094 |
Cultrera di Montesano, S. (2024). Persistence and Morse theory for discrete geometric structures. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:15094
[Published Version]
View
| Files available
| DOI
2023 |Epub ahead of print| Journal Article | IST-REx-ID: 13182 |
Biswas, R., Cultrera di Montesano, S., Edelsbrunner, H., & Saghafian, M. (2023). Geometric characterization of the persistence of 1D maps. Journal of Applied and Computational Topology. Springer Nature. https://doi.org/10.1007/s41468-023-00126-9
[Published Version]
View
| Files available
| DOI
2022 |Published| Journal Article | IST-REx-ID: 10773 |
Biswas, R., Cultrera di Montesano, S., Edelsbrunner, H., & Saghafian, M. (2022). Continuous and discrete radius functions on Voronoi tessellations and Delaunay mosaics. Discrete and Computational Geometry. Springer Nature. https://doi.org/10.1007/s00454-022-00371-2
[Published Version]
View
| Files available
| DOI
| WoS
2022 |Submitted| Journal Article | IST-REx-ID: 11660 |
Biswas, R., Cultrera di Montesano, S., Edelsbrunner, H., & Saghafian, M. (n.d.). A window to the persistence of 1D maps. I: Geometric characterization of critical point pairs. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.
[Submitted Version]
View
| Files available
2022 |Submitted| Preprint | IST-REx-ID: 15090 |
Biswas, R., Cultrera di Montesano, S., Draganov, O., Edelsbrunner, H., & Saghafian, M. (n.d.). On the size of chromatic Delaunay mosaics. arXiv.
[Preprint]
View
| Files available
| Download Preprint (ext.)
| arXiv
2022 |Submitted| Journal Article | IST-REx-ID: 11658 |
Biswas, R., Cultrera di Montesano, S., Edelsbrunner, H., & Saghafian, M. (n.d.). Depth in arrangements: Dehn–Sommerville–Euler relations with applications. Leibniz International Proceedings on Mathematics. Schloss Dagstuhl - Leibniz Zentrum für Informatik.
[Submitted Version]
View
| Files available
2021 |Published| Conference Paper | IST-REx-ID: 9604 |
Biswas, R., Cultrera di Montesano, S., Edelsbrunner, H., & Saghafian, M. (2021). Counting cells of order-k voronoi tessellations in ℝ3 with morse theory. In Leibniz International Proceedings in Informatics (Vol. 189). Online: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2021.16
[Published Version]
View
| Files available
| DOI
10 Publications
2024 |Published| Conference Paper | IST-REx-ID: 15093 |
Cultrera di Montesano, S., Edelsbrunner, H., Henzinger, M. H., & Ost, L. (2024). Dynamically maintaining the persistent homology of time series. In D. P. Woodruff (Ed.), Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) (pp. 243–295). Alexandria, VA, USA: Society for Industrial and Applied Mathematics. https://doi.org/10.1137/1.9781611977912.11
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| arXiv
2024 |Submitted| Preprint | IST-REx-ID: 15091 |
Cultrera di Montesano, S., Draganov, O., Edelsbrunner, H., & Saghafian, M. (n.d.). Chromatic alpha complexes. arXiv.
[Preprint]
View
| Files available
| Download Preprint (ext.)
| arXiv
2024 |Published| Journal Article | IST-REx-ID: 15380 |
Biswas, R., Cultrera di Montesano, S., Edelsbrunner, H., & Saghafian, M. (2024). Depth in arrangements: Dehn–Sommerville–Euler relations with applications. Journal of Applied and Computational Topology. Springer Nature. https://doi.org/10.1007/s41468-024-00173-w
[Published Version]
View
| Files available
| DOI
| Download Published Version (ext.)
2024 |Published| Thesis | IST-REx-ID: 15094 |
Cultrera di Montesano, S. (2024). Persistence and Morse theory for discrete geometric structures. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:15094
[Published Version]
View
| Files available
| DOI
2023 |Epub ahead of print| Journal Article | IST-REx-ID: 13182 |
Biswas, R., Cultrera di Montesano, S., Edelsbrunner, H., & Saghafian, M. (2023). Geometric characterization of the persistence of 1D maps. Journal of Applied and Computational Topology. Springer Nature. https://doi.org/10.1007/s41468-023-00126-9
[Published Version]
View
| Files available
| DOI
2022 |Published| Journal Article | IST-REx-ID: 10773 |
Biswas, R., Cultrera di Montesano, S., Edelsbrunner, H., & Saghafian, M. (2022). Continuous and discrete radius functions on Voronoi tessellations and Delaunay mosaics. Discrete and Computational Geometry. Springer Nature. https://doi.org/10.1007/s00454-022-00371-2
[Published Version]
View
| Files available
| DOI
| WoS
2022 |Submitted| Journal Article | IST-REx-ID: 11660 |
Biswas, R., Cultrera di Montesano, S., Edelsbrunner, H., & Saghafian, M. (n.d.). A window to the persistence of 1D maps. I: Geometric characterization of critical point pairs. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.
[Submitted Version]
View
| Files available
2022 |Submitted| Preprint | IST-REx-ID: 15090 |
Biswas, R., Cultrera di Montesano, S., Draganov, O., Edelsbrunner, H., & Saghafian, M. (n.d.). On the size of chromatic Delaunay mosaics. arXiv.
[Preprint]
View
| Files available
| Download Preprint (ext.)
| arXiv
2022 |Submitted| Journal Article | IST-REx-ID: 11658 |
Biswas, R., Cultrera di Montesano, S., Edelsbrunner, H., & Saghafian, M. (n.d.). Depth in arrangements: Dehn–Sommerville–Euler relations with applications. Leibniz International Proceedings on Mathematics. Schloss Dagstuhl - Leibniz Zentrum für Informatik.
[Submitted Version]
View
| Files available
2021 |Published| Conference Paper | IST-REx-ID: 9604 |
Biswas, R., Cultrera di Montesano, S., Edelsbrunner, H., & Saghafian, M. (2021). Counting cells of order-k voronoi tessellations in ℝ3 with morse theory. In Leibniz International Proceedings in Informatics (Vol. 189). Online: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2021.16
[Published Version]
View
| Files available
| DOI