Counting cells of order-k voronoi tessellations in ℝ3 with morse theory

Biswas R, Cultrera di Montesano S, Edelsbrunner H, Saghafian M. 2021. Counting cells of order-k voronoi tessellations in ℝ3 with morse theory. Leibniz International Proceedings in Informatics. SoCG: International Symposium on Computational Geometry, LIPIcs, vol. 189, 16.

Download
OA 2021_LIPIcs_Biswas.pdf 727.82 KB [Published Version]

Conference Paper | Published | English

Scopus indexed
Department
Series Title
LIPIcs
Abstract
Generalizing Lee’s inductive argument for counting the cells of higher order Voronoi tessellations in ℝ² to ℝ³, we get precise relations in terms of Morse theoretic quantities for piecewise constant functions on planar arrangements. Specifically, we prove that for a generic set of n ≥ 5 points in ℝ³, the number of regions in the order-k Voronoi tessellation is N_{k-1} - binom(k,2)n + n, for 1 ≤ k ≤ n-1, in which N_{k-1} is the sum of Euler characteristics of these function’s first k-1 sublevel sets. We get similar expressions for the vertices, edges, and polygons of the order-k Voronoi tessellation.
Publishing Year
Date Published
2021-06-02
Proceedings Title
Leibniz International Proceedings in Informatics
Publisher
Schloss Dagstuhl - Leibniz-Zentrum für Informatik
Volume
189
Article Number
16
Conference
SoCG: International Symposium on Computational Geometry
Conference Location
Online
Conference Date
2021-06-07 – 2021-06-11
ISSN
IST-REx-ID

Cite this

Biswas R, Cultrera di Montesano S, Edelsbrunner H, Saghafian M. Counting cells of order-k voronoi tessellations in ℝ3 with morse theory. In: Leibniz International Proceedings in Informatics. Vol 189. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2021. doi:10.4230/LIPIcs.SoCG.2021.16
Biswas, R., Cultrera di Montesano, S., Edelsbrunner, H., & Saghafian, M. (2021). Counting cells of order-k voronoi tessellations in ℝ3 with morse theory. In Leibniz International Proceedings in Informatics (Vol. 189). Online: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2021.16
Biswas, Ranita, Sebastiano Cultrera di Montesano, Herbert Edelsbrunner, and Morteza Saghafian. “Counting Cells of Order-k Voronoi Tessellations in ℝ3 with Morse Theory.” In Leibniz International Proceedings in Informatics, Vol. 189. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. https://doi.org/10.4230/LIPIcs.SoCG.2021.16.
R. Biswas, S. Cultrera di Montesano, H. Edelsbrunner, and M. Saghafian, “Counting cells of order-k voronoi tessellations in ℝ3 with morse theory,” in Leibniz International Proceedings in Informatics, Online, 2021, vol. 189.
Biswas R, Cultrera di Montesano S, Edelsbrunner H, Saghafian M. 2021. Counting cells of order-k voronoi tessellations in ℝ3 with morse theory. Leibniz International Proceedings in Informatics. SoCG: International Symposium on Computational Geometry, LIPIcs, vol. 189, 16.
Biswas, Ranita, et al. “Counting Cells of Order-k Voronoi Tessellations in ℝ3 with Morse Theory.” Leibniz International Proceedings in Informatics, vol. 189, 16, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021, doi:10.4230/LIPIcs.SoCG.2021.16.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
File Name
Access Level
OA Open Access
Date Uploaded
2021-06-28
MD5 Checksum
22b11a719018b22ecba2471b51f2eb40


Export

Marked Publications

Open Data ISTA Research Explorer

Search this title in

Google Scholar
ISBN Search