Persistent Homology, Algorithms and Stochastic Geometry

Project Period: 2020-10-01 – 2024-09-30
Funder: Austrian Science Fund
Acronym
DGD
Principal Investigator
Department(s)
Grant Number
I4887
Grant DOI
Funder
Austrian Science Fund
Funder Schema
FWF-DFG-SFB
Funder Registry

8 Publications

2024 | Published | Thesis | IST-REx-ID: 15094 | OA
Persistence and Morse theory for discrete geometric structures
Cultrera di Montesano, Sebastiano, Persistence and Morse theory for discrete geometric structures. 2024
[Published Version] View | Files available | DOI
 
2024 | Published | Journal Article | IST-REx-ID: 13182 | OA
Geometric characterization of the persistence of 1D maps
R. Biswas, S. Cultrera di Montesano, H. Edelsbrunner, M. Saghafian, Journal of Applied and Computational Topology 8 (2024) 1101–1119.
[Published Version] View | Files available | DOI | PubMed | Europe PMC
 
2023 | Published | Journal Article | IST-REx-ID: 13134
Discrete analytical objects in the body-centered cubic grid
L. Čomić, G. Largeteau-Skapin, R. Zrour, R. Biswas, E. Andres, Pattern Recognition 142 (2023).
View | DOI | WoS
 
2022 | Draft | Preprint | IST-REx-ID: 15090 | OA
On the size of chromatic Delaunay mosaics
R. Biswas, S. Cultrera di Montesano, O. Draganov, H. Edelsbrunner, M. Saghafian, ArXiv (n.d.).
[Preprint] View | Files available | Download Preprint (ext.) | arXiv
 
2021 | Published | Conference Paper | IST-REx-ID: 9604 | OA
Counting cells of order-k voronoi tessellations in ℝ3 with morse theory
Biswas, Ranita, Counting cells of order-k voronoi tessellations in ℝ<sup>3</sup> with morse theory. Leibniz International Proceedings in Informatics 189. 2021
[Published Version] View | Files available | DOI
 
2021 | Published | Journal Article | IST-REx-ID: 10222 | OA
The beauty of random polytopes inscribed in the 2-sphere
A. Akopyan, H. Edelsbrunner, A. Nikitenko, Experimental Mathematics (2021) 1–15.
[Published Version] View | Files available | DOI | WoS | arXiv
 
2021 | Published | Conference Paper | IST-REx-ID: 9345 | OA
The density fingerprint of a periodic point set
H. Edelsbrunner, T. Heiss, V. Kurlin , P. Smith, M. Wintraecken, in:, 37th International Symposium on Computational Geometry (SoCG 2021), Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021, p. 32:1-32:16.
[Published Version] View | Files available | DOI
 
2020 | Published | Journal Article | IST-REx-ID: 9630 | OA
Topological data analysis in information space
H. Edelsbrunner, Z. Virk, H. Wagner, Journal of Computational Geometry 11 (2020) 162–182.
[Published Version] View | Files available | DOI
 

Search

Filter Publications

Display / Sort

Export / Embed