The density fingerprint of a periodic point set

Edelsbrunner H, Heiss T, Kurlin V, Smith P, Wintraecken M. 2021. The density fingerprint of a periodic point set. 37th International Symposium on Computational Geometry (SoCG 2021). SoCG: Symposium on Computational Geometry, LIPIcs, vol. 189, 32:1-32:16.

Download
OA df_socg_final_version.pdf 3.12 MB [Published Version]

Conference Paper | Published | English

Scopus indexed
Author
Department
Series Title
LIPIcs
Abstract
Modeling a crystal as a periodic point set, we present a fingerprint consisting of density functionsthat facilitates the efficient search for new materials and material properties. We prove invarianceunder isometries, continuity, and completeness in the generic case, which are necessary featuresfor the reliable comparison of crystals. The proof of continuity integrates methods from discretegeometry and lattice theory, while the proof of generic completeness combines techniques fromgeometry with analysis. The fingerprint has a fast algorithm based on Brillouin zones and relatedinclusion-exclusion formulae. We have implemented the algorithm and describe its application tocrystal structure prediction.
Publishing Year
Date Published
2021-06-02
Proceedings Title
37th International Symposium on Computational Geometry (SoCG 2021)
Publisher
Schloss Dagstuhl - Leibniz-Zentrum für Informatik
Acknowledgement
The authors thank Janos Pach for insightful discussions on the topic of thispaper, Morteza Saghafian for finding the one-dimensional counterexample mentioned in Section 5,and Larry Andrews for generously sharing his crystallographic perspective.
Volume
189
Page
32:1-32:16
Conference
SoCG: Symposium on Computational Geometry
Conference Location
Virtual
Conference Date
2021-06-07 – 2021-06-11
ISSN
IST-REx-ID

Cite this

Edelsbrunner H, Heiss T, Kurlin V, Smith P, Wintraecken M. The density fingerprint of a periodic point set. In: 37th International Symposium on Computational Geometry (SoCG 2021). Vol 189. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2021:32:1-32:16. doi:10.4230/LIPIcs.SoCG.2021.32
Edelsbrunner, H., Heiss, T., Kurlin , V., Smith, P., & Wintraecken, M. (2021). The density fingerprint of a periodic point set. In 37th International Symposium on Computational Geometry (SoCG 2021) (Vol. 189, p. 32:1-32:16). Virtual: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2021.32
Edelsbrunner, Herbert, Teresa Heiss, Vitaliy Kurlin , Philip Smith, and Mathijs Wintraecken. “The Density Fingerprint of a Periodic Point Set.” In 37th International Symposium on Computational Geometry (SoCG 2021), 189:32:1-32:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. https://doi.org/10.4230/LIPIcs.SoCG.2021.32.
H. Edelsbrunner, T. Heiss, V. Kurlin , P. Smith, and M. Wintraecken, “The density fingerprint of a periodic point set,” in 37th International Symposium on Computational Geometry (SoCG 2021), Virtual, 2021, vol. 189, p. 32:1-32:16.
Edelsbrunner H, Heiss T, Kurlin V, Smith P, Wintraecken M. 2021. The density fingerprint of a periodic point set. 37th International Symposium on Computational Geometry (SoCG 2021). SoCG: Symposium on Computational Geometry, LIPIcs, vol. 189, 32:1-32:16.
Edelsbrunner, Herbert, et al. “The Density Fingerprint of a Periodic Point Set.” 37th International Symposium on Computational Geometry (SoCG 2021), vol. 189, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021, p. 32:1-32:16, doi:10.4230/LIPIcs.SoCG.2021.32.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
File Name
Access Level
OA Open Access
Date Uploaded
2021-04-22
MD5 Checksum
1787baef1523d6d93753b90d0c109a6d


Export

Marked Publications

Open Data ISTA Research Explorer

Search this title in

Google Scholar