The beauty of random polytopes inscribed in the 2-sphere

Journal Article | Epub ahead of print | English

Scopus indexed
Consider a random set of points on the unit sphere in ℝd, which can be either uniformly sampled or a Poisson point process. Its convex hull is a random inscribed polytope, whose boundary approximates the sphere. We focus on the case d = 3, for which there are elementary proofs and fascinating formulas for metric properties. In particular, we study the fraction of acute facets, the expected intrinsic volumes, the total edge length, and the distance to a fixed point. Finally we generalize the results to the ellipsoid with homeoid density.
Publishing Year
Date Published
Journal Title
Experimental Mathematics
This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme, grant no. 788183, from the Wittgenstein Prize, Austrian Science Fund (FWF), grant no. Z 342-N31, and from the DFG Collaborative Research Center TRR 109, ‘Discretization in Geometry and Dynamics’, Austrian Science Fund (FWF), grant no. I 02979-N35. We are grateful to Dmitry Zaporozhets and Christoph Thäle for valuable comments and for directing us to relevant references. We also thank to Anton Mellit for a useful discussion on Bessel functions.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]

Link(s) to Main File(s)
Access Level
OA Open Access


Marked Publications

Open Data ISTA Research Explorer


arXiv 2007.07783

Search this title in

Google Scholar