A window to the persistence of 1D maps. I: Geometric characterization of critical point pairs

Biswas R, Cultrera di Montesano S, Edelsbrunner H, Saghafian M. A window to the persistence of 1D maps. I: Geometric characterization of critical point pairs. LIPIcs.

Download
OA window 1.pdf 564.84 KB [Submitted Version]
Journal Article | Submitted | English
Series Title
LIPIcs
Abstract
We characterize critical points of 1-dimensional maps paired in persistent homology geometrically and this way get elementary proofs of theorems about the symmetry of persistence diagrams and the variation of such maps. In particular, we identify branching points and endpoints of networks as the sole source of asymmetry and relate the cycle basis in persistent homology with a version of the stable marriage problem. Our analysis provides the foundations of fast algorithms for maintaining collections of interrelated sorted lists together with their persistence diagrams.
Publishing Year
Date Published
2022-07-25
Journal Title
LIPIcs
Acknowledgement
This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme, grant no. 788183, from the Wittgenstein Prize, Austrian Science Fund (FWF), grant no. Z 342-N31, and from the DFG Collaborative Research Center TRR 109, ‘Discretization in Geometry and Dynamics’, Austrian Science Fund (FWF), grant no. I 02979-N35.
IST-REx-ID

Cite this

Biswas R, Cultrera di Montesano S, Edelsbrunner H, Saghafian M. A window to the persistence of 1D maps. I: Geometric characterization of critical point pairs. LIPIcs.
Biswas, R., Cultrera di Montesano, S., Edelsbrunner, H., & Saghafian, M. (n.d.). A window to the persistence of 1D maps. I: Geometric characterization of critical point pairs. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.
Biswas, Ranita, Sebastiano Cultrera di Montesano, Herbert Edelsbrunner, and Morteza Saghafian. “A Window to the Persistence of 1D Maps. I: Geometric Characterization of Critical Point Pairs.” LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, n.d.
R. Biswas, S. Cultrera di Montesano, H. Edelsbrunner, and M. Saghafian, “A window to the persistence of 1D maps. I: Geometric characterization of critical point pairs,” LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.
Biswas R, Cultrera di Montesano S, Edelsbrunner H, Saghafian M. A window to the persistence of 1D maps. I: Geometric characterization of critical point pairs. LIPIcs.
Biswas, Ranita, et al. “A Window to the Persistence of 1D Maps. I: Geometric Characterization of Critical Point Pairs.” LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
File Name
window 1.pdf 564.84 KB
Access Level
OA Open Access
Date Uploaded
2022-07-27
MD5 Checksum
95903f9d1649e8e437a967b6f2f64730


Material in ISTA:
Dissertation containing ISTA record

Export

Marked Publications

Open Data ISTA Research Explorer

Search this title in

Google Scholar