Orthogonal polynomial duality of boundary driven particle systems and non-equilibrium correlations
Floreani S, Redig F, Sau F. 2022. Orthogonal polynomial duality of boundary driven particle systems and non-equilibrium correlations. Annales de l’institut Henri Poincare (B) Probability and Statistics. 58(1), 220–247.
Download (ext.)
https://arxiv.org/abs/2007.08272
[Preprint]
Journal Article
| Published
| English
Scopus indexed
Author
Floreani, Simone;
Redig, Frank;
Sau, FedericoISTA
Department
Abstract
We consider symmetric partial exclusion and inclusion processes in a general graph in contact with reservoirs, where we allow both for edge disorder and well-chosen site disorder. We extend the classical dualities to this context and then we derive new orthogonal polynomial dualities. From the classical dualities, we derive the uniqueness of the non-equilibrium steady state and obtain correlation inequalities. Starting from the orthogonal polynomial dualities, we show universal properties of n-point correlation functions in the non-equilibrium steady state for systems with at most two different reservoir parameters, such as a chain with reservoirs at left and right ends.
Nous considérons des processus d’exclusion partielle, et des processus d’inclusion sur un graphe général en contact avec des réservoirs. Nous autorisons la présence de inhomogenéités sur les arrêts ainsi que sur les sommets du graph. Nous généralisons les “dualités classiques” dans ce contexte et nous démontrons des nouvelles dualités orthogonales. À partir des dualités classiques, nous démontrons l’unicité de l’état stationnaire non-équilibre, ainsi que des inégalités de corrélation. À partir des dualités orthogonales nous démontrons des propriétés universelles des fonctions de corrélation à n points dans l’état stationnaire non-équilibre pour des systèmes avec deux paramètres de réservoirs inégaux, comme par exemple une chaîne avec des réservoirs à droite et à gauche.
Nous considérons des processus d’exclusion partielle, et des processus d’inclusion sur un graphe général en contact avec des réservoirs. Nous autorisons la présence de inhomogenéités sur les arrêts ainsi que sur les sommets du graph. Nous généralisons les “dualités classiques” dans ce contexte et nous démontrons des nouvelles dualités orthogonales. À partir des dualités classiques, nous démontrons l’unicité de l’état stationnaire non-équilibre, ainsi que des inégalités de corrélation. À partir des dualités orthogonales nous démontrons des propriétés universelles des fonctions de corrélation à n points dans l’état stationnaire non-équilibre pour des systèmes avec deux paramètres de réservoirs inégaux, comme par exemple une chaîne avec des réservoirs à droite et à gauche.
Publishing Year
Date Published
2022-02-01
Journal Title
Annales de l'institut Henri Poincare (B) Probability and Statistics
Publisher
Institute of Mathematical Statistics
Acknowledgement
The authors would like to thank Gioia Carinci and Cristian Giardinà for useful discussions. F.R. and S.F. thank Jean-René Chazottes for a stay at CPHT (Institut Polytechnique de Paris), in the realm of Chaire d’Alembert (Paris-Saclay University), where part of this work was performed. S.F. acknowledges Simona Villa for her support in creating the picture. S.F. acknowledges financial support from NWO via the grant TOP1.17.019. F.S. acknowledges financial support from the European Union’s Horizon 2020 research and innovation programme under the Marie-Skłodowska-Curie grant agreement No. 754411.
Volume
58
Issue
1
Page
220-247
ISSN
IST-REx-ID
Cite this
Floreani S, Redig F, Sau F. Orthogonal polynomial duality of boundary driven particle systems and non-equilibrium correlations. Annales de l’institut Henri Poincare (B) Probability and Statistics. 2022;58(1):220-247. doi:10.1214/21-AIHP1163
Floreani, S., Redig, F., & Sau, F. (2022). Orthogonal polynomial duality of boundary driven particle systems and non-equilibrium correlations. Annales de l’institut Henri Poincare (B) Probability and Statistics. Institute of Mathematical Statistics. https://doi.org/10.1214/21-AIHP1163
Floreani, Simone, Frank Redig, and Federico Sau. “Orthogonal Polynomial Duality of Boundary Driven Particle Systems and Non-Equilibrium Correlations.” Annales de l’institut Henri Poincare (B) Probability and Statistics. Institute of Mathematical Statistics, 2022. https://doi.org/10.1214/21-AIHP1163.
S. Floreani, F. Redig, and F. Sau, “Orthogonal polynomial duality of boundary driven particle systems and non-equilibrium correlations,” Annales de l’institut Henri Poincare (B) Probability and Statistics, vol. 58, no. 1. Institute of Mathematical Statistics, pp. 220–247, 2022.
Floreani S, Redig F, Sau F. 2022. Orthogonal polynomial duality of boundary driven particle systems and non-equilibrium correlations. Annales de l’institut Henri Poincare (B) Probability and Statistics. 58(1), 220–247.
Floreani, Simone, et al. “Orthogonal Polynomial Duality of Boundary Driven Particle Systems and Non-Equilibrium Correlations.” Annales de l’institut Henri Poincare (B) Probability and Statistics, vol. 58, no. 1, Institute of Mathematical Statistics, 2022, pp. 220–47, doi:10.1214/21-AIHP1163.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Link(s) to Main File(s)
Access Level
Open Access
Export
Marked PublicationsOpen Data ISTA Research Explorer
Web of Science
View record in Web of Science®Sources
arXiv 2007.08272