Transcriptional and functional changes of the human microvasculature during physiological aging and Alzheimer disease

Bersini S, Arrojo e Drigo R, Huang L, Shokhirev MN, Hetzer M. 2020. Transcriptional and functional changes of the human microvasculature during physiological aging and Alzheimer disease. Advanced Biosystems. 4(5), 2000044.

Download
OA 2020_AdvancedBiosystems_Bersini.pdf 2.49 MB [Published Version]

Journal Article | Published | English

Scopus indexed
Author
Bersini, Simone; Arrojo e Drigo, Rafael; Huang, Ling; Shokhirev, Maxim N.; Hetzer, MartinISTA
Abstract
Aging of the circulatory system correlates with the pathogenesis of a large spectrum of diseases. However, it is largely unknown which factors drive the age-dependent or pathological decline of the vasculature and how vascular defects relate to tissue aging. The goal of the study is to design a multianalytical approach to identify how the cellular microenvironment (i.e., fibroblasts) and serum from healthy donors of different ages or Alzheimer disease (AD) patients can modulate the functionality of organ-specific vascular endothelial cells (VECs). Long-living human microvascular networks embedding VECs and fibroblasts from skin biopsies are generated. RNA-seq, secretome analyses, and microfluidic assays demonstrate that fibroblasts from young donors restore the functionality of aged endothelial cells, an effect also achieved by serum from young donors. New biomarkers of vascular aging are validated in human biopsies and it is shown that young serum induces angiopoietin-like-4, which can restore compromised vascular barriers. This strategy is then employed to characterize transcriptional/functional changes induced on the blood–brain barrier by AD serum, demonstrating the importance of PTP4A3 in the regulation of permeability. Features of vascular degeneration during aging and AD are recapitulated, and a tool to identify novel biomarkers that can be exploited to develop future therapeutics modulating vascular function is established.
Publishing Year
Date Published
2020-05-01
Journal Title
Advanced Biosystems
Publisher
Wiley
Volume
4
Issue
5
Article Number
2000044
IST-REx-ID

Cite this

Bersini S, Arrojo e Drigo R, Huang L, Shokhirev MN, Hetzer M. Transcriptional and functional changes of the human microvasculature during physiological aging and Alzheimer disease. Advanced Biosystems. 2020;4(5). doi:10.1002/adbi.202000044
Bersini, S., Arrojo e Drigo, R., Huang, L., Shokhirev, M. N., & Hetzer, M. (2020). Transcriptional and functional changes of the human microvasculature during physiological aging and Alzheimer disease. Advanced Biosystems. Wiley. https://doi.org/10.1002/adbi.202000044
Bersini, Simone, Rafael Arrojo e Drigo, Ling Huang, Maxim N. Shokhirev, and Martin Hetzer. “Transcriptional and Functional Changes of the Human Microvasculature during Physiological Aging and Alzheimer Disease.” Advanced Biosystems. Wiley, 2020. https://doi.org/10.1002/adbi.202000044.
S. Bersini, R. Arrojo e Drigo, L. Huang, M. N. Shokhirev, and M. Hetzer, “Transcriptional and functional changes of the human microvasculature during physiological aging and Alzheimer disease,” Advanced Biosystems, vol. 4, no. 5. Wiley, 2020.
Bersini S, Arrojo e Drigo R, Huang L, Shokhirev MN, Hetzer M. 2020. Transcriptional and functional changes of the human microvasculature during physiological aging and Alzheimer disease. Advanced Biosystems. 4(5), 2000044.
Bersini, Simone, et al. “Transcriptional and Functional Changes of the Human Microvasculature during Physiological Aging and Alzheimer Disease.” Advanced Biosystems, vol. 4, no. 5, 2000044, Wiley, 2020, doi:10.1002/adbi.202000044.
All files available under the following license(s):
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0):
Main File(s)
Access Level
OA Open Access
Date Uploaded
2022-04-08
MD5 Checksum
5584d9a1609812dc75c02ce1e35d2ec0


Export

Marked Publications

Open Data ISTA Research Explorer

Sources

PMID: 32402127
PubMed | Europe PMC

Search this title in

Google Scholar