Dynamic regulation of histone modifications and long-range chromosomal interactions during postmitotic transcriptional reactivation
Kang H, Shokhirev MN, Xu Z, Chandran S, Dixon JR, Hetzer M. 2020. Dynamic regulation of histone modifications and long-range chromosomal interactions during postmitotic transcriptional reactivation. Genes & Development. 34(13–14), 913–930.
Download
Journal Article
| Published
| English
Scopus indexed
Author
Kang, Hyeseon;
Shokhirev, Maxim N.;
Xu, Zhichao;
Chandran, Sahaana;
Dixon, Jesse R.;
Hetzer, MartinISTA
Abstract
During mitosis, transcription of genomic DNA is dramatically reduced, before it is reactivated during nuclear reformation in anaphase/telophase. Many aspects of the underlying principles that mediate transcriptional memory and reactivation in the daughter cells remain unclear. Here, we used ChIP-seq on synchronized cells at different stages after mitosis to generate genome-wide maps of histone modifications. Combined with EU-RNA-seq and Hi-C analyses, we found that during prometaphase, promoters, enhancers, and insulators retain H3K4me3 and H3K4me1, while losing H3K27ac. Enhancers globally retaining mitotic H3K4me1 or locally retaining mitotic H3K27ac are associated with cell type-specific genes and their transcription factors for rapid transcriptional activation. As cells exit mitosis, promoters regain H3K27ac, which correlates with transcriptional reactivation. Insulators also gain H3K27ac and CCCTC-binding factor (CTCF) in anaphase/telophase. This increase of H3K27ac in anaphase/telophase is required for posttranscriptional activation and may play a role in the establishment of topologically associating domains (TADs). Together, our results suggest that the genome is reorganized in a sequential order, in which histone methylations occur first in prometaphase, histone acetylation, and CTCF in anaphase/telophase, transcription in cytokinesis, and long-range chromatin interactions in early G1. We thus provide insights into the histone modification landscape that allows faithful reestablishment of the transcriptional program and TADs during cell division.
Keywords
Publishing Year
Date Published
2020-04-28
Journal Title
Genes & Development
Publisher
Cold Spring Harbor Laboratory Press
Volume
34
Issue
13-14
Page
913-930
IST-REx-ID
Cite this
Kang H, Shokhirev MN, Xu Z, Chandran S, Dixon JR, Hetzer M. Dynamic regulation of histone modifications and long-range chromosomal interactions during postmitotic transcriptional reactivation. Genes & Development. 2020;34(13-14):913-930. doi:10.1101/gad.335794.119
Kang, H., Shokhirev, M. N., Xu, Z., Chandran, S., Dixon, J. R., & Hetzer, M. (2020). Dynamic regulation of histone modifications and long-range chromosomal interactions during postmitotic transcriptional reactivation. Genes & Development. Cold Spring Harbor Laboratory Press. https://doi.org/10.1101/gad.335794.119
Kang, Hyeseon, Maxim N. Shokhirev, Zhichao Xu, Sahaana Chandran, Jesse R. Dixon, and Martin Hetzer. “Dynamic Regulation of Histone Modifications and Long-Range Chromosomal Interactions during Postmitotic Transcriptional Reactivation.” Genes & Development. Cold Spring Harbor Laboratory Press, 2020. https://doi.org/10.1101/gad.335794.119.
H. Kang, M. N. Shokhirev, Z. Xu, S. Chandran, J. R. Dixon, and M. Hetzer, “Dynamic regulation of histone modifications and long-range chromosomal interactions during postmitotic transcriptional reactivation,” Genes & Development, vol. 34, no. 13–14. Cold Spring Harbor Laboratory Press, pp. 913–930, 2020.
Kang H, Shokhirev MN, Xu Z, Chandran S, Dixon JR, Hetzer M. 2020. Dynamic regulation of histone modifications and long-range chromosomal interactions during postmitotic transcriptional reactivation. Genes & Development. 34(13–14), 913–930.
Kang, Hyeseon, et al. “Dynamic Regulation of Histone Modifications and Long-Range Chromosomal Interactions during Postmitotic Transcriptional Reactivation.” Genes & Development, vol. 34, no. 13–14, Cold Spring Harbor Laboratory Press, 2020, pp. 913–30, doi:10.1101/gad.335794.119.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
File Name
2020_GenesDevelopment_Kang.pdf
4.41 MB
Access Level
Open Access
Date Uploaded
2022-04-08
MD5 Checksum
84e92d40e67936c739628315c238daf9
Export
Marked PublicationsOpen Data ISTA Research Explorer
Sources
PMID: 32499403
PubMed | Europe PMC