Closed-loop control of direct ink writing via reinforcement learning
Piovarci M, Foshey M, Xu J, Erps T, Babaei V, Didyk P, Rusinkiewicz S, Matusik W, Bickel B. 2022. Closed-loop control of direct ink writing via reinforcement learning. ACM Transactions on Graphics. 41(4), 112.
Download
Journal Article
| Published
| English
Scopus indexed
Author
Piovarci, MichalISTA ;
Foshey, Michael;
Xu, Jie;
Erps, Timothy;
Babaei, Vahid;
Didyk, Piotr;
Rusinkiewicz, Szymon;
Matusik, Wojciech;
Bickel, BerndISTA
Corresponding author has ISTA affiliation
Department
Grant
Abstract
Enabling additive manufacturing to employ a wide range of novel, functional materials can be a major boost to this technology. However, making such materials printable requires painstaking trial-and-error by an expert operator,
as they typically tend to exhibit peculiar rheological or hysteresis properties. Even in the case of successfully finding the process parameters, there is no guarantee of print-to-print consistency due to material differences between batches. These challenges make closed-loop feedback an attractive option where the process parameters are adjusted on-the-fly. There are several challenges for designing an efficient controller: the deposition parameters are complex and highly coupled, artifacts occur after long time horizons, simulating the deposition is computationally costly, and learning on hardware is intractable. In this work, we demonstrate the feasibility of learning a closed-loop control policy for additive manufacturing using reinforcement learning. We show that approximate, but efficient, numerical simulation is
sufficient as long as it allows learning the behavioral patterns of deposition that translate to real-world experiences. In combination with reinforcement learning, our model can be used to discover control policies that outperform
baseline controllers. Furthermore, the recovered policies have a minimal sim-to-real gap. We showcase this by applying our control policy in-vivo on a single-layer, direct ink writing printer.
Publishing Year
Date Published
2022-06-01
Journal Title
ACM Transactions on Graphics
Publisher
Association for Computing Machinery
Acknowledgement
This work is graciously supported by the following grant agencies: FWF Lise Meitner (Grant M 3319), SNSF (Grant 200502), ERC Starting Grant (MATERIALIZABLE-715767), NSF (Grant IIS-181507).
Volume
41
Issue
4
Article Number
112
ISSN
eISSN
IST-REx-ID
Cite this
Piovarci M, Foshey M, Xu J, et al. Closed-loop control of direct ink writing via reinforcement learning. ACM Transactions on Graphics. 2022;41(4). doi:10.1145/3528223.3530144
Piovarci, M., Foshey, M., Xu, J., Erps, T., Babaei, V., Didyk, P., … Bickel, B. (2022). Closed-loop control of direct ink writing via reinforcement learning. ACM Transactions on Graphics. Association for Computing Machinery. https://doi.org/10.1145/3528223.3530144
Piovarci, Michael, Michael Foshey, Jie Xu, Timothy Erps, Vahid Babaei, Piotr Didyk, Szymon Rusinkiewicz, Wojciech Matusik, and Bernd Bickel. “Closed-Loop Control of Direct Ink Writing via Reinforcement Learning.” ACM Transactions on Graphics. Association for Computing Machinery, 2022. https://doi.org/10.1145/3528223.3530144.
M. Piovarci et al., “Closed-loop control of direct ink writing via reinforcement learning,” ACM Transactions on Graphics, vol. 41, no. 4. Association for Computing Machinery, 2022.
Piovarci M, Foshey M, Xu J, Erps T, Babaei V, Didyk P, Rusinkiewicz S, Matusik W, Bickel B. 2022. Closed-loop control of direct ink writing via reinforcement learning. ACM Transactions on Graphics. 41(4), 112.
Piovarci, Michael, et al. “Closed-Loop Control of Direct Ink Writing via Reinforcement Learning.” ACM Transactions on Graphics, vol. 41, no. 4, 112, Association for Computing Machinery, 2022, doi:10.1145/3528223.3530144.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
File Name
Access Level
Open Access
Date Uploaded
2022-06-28
MD5 Checksum
27f6fe41c6ff84d50445cc9b0176d45b
External material:
Press Release
Description
News on ISTA website
Export
Marked PublicationsOpen Data ISTA Research Explorer
Sources
arXiv 2201.11819