Comparison of the effects of nicotinic acid and nicotinamide degradation on plasma betaine and choline levels

Sun W, Zhai M-Z, Li D, Zhou Y, Chen N, Guo M, Zhou S. 2017. Comparison of the effects of nicotinic acid and nicotinamide degradation on plasma betaine and choline levels. Clinical Nutrition. 36(4), 1136–1142.

Download
No fulltext has been uploaded. References only!

Journal Article | Published | English

Scopus indexed
Author
Sun, Wuping; Zhai, Ming-ZhuISTA; Li, Da; Zhou, Yiming; Chen, Nana; Guo, Ming; Zhou, Shisheng
Department
Abstract
Aim: The present study was to compare the effects of nicotinic acid and nicotinamide on the plasma methyl donors, choline and betaine. Methods: Thirty adult subjects were randomly divided into three groups of equal size, and orally received purified water (C group), nicotinic acid (300 mg, NA group) or nicotinamide (300 mg, NM group). Plasma nicotinamide, N 1-methylnicotinamide, homocysteine, betaine and choline levels before and 1.5-h and 3-h post-dosing, plasma normetanephrine and metanephrine concentrations at 3-h post-dosing, and the urinary excretion of N 1-methyl-2-pyridone-5-carboxamide during the test period were examined. Results: The level of 3-h plasma nicotinamide, N 1-methylnicotinamide, homocysteine, the urinary excretion of N 1-methyl-2-pyridone-5-carboxamide and pulse pressure (PP) in the NM group was 221%, 3972%, 61%, 1728% and 21.2% higher than that of the control group (P < 0.01, except homocysteine and PP P < 0.05), while the 3-h plasma betaine, normetanephrine and metanephrine level in the NM group was 24.4%, 9.4% and 11.7% lower (P < 0.05, except betaine P < 0.01), without significant difference in choline levels. Similar but less pronounced changes were observed in the NA group, with a lower level of 3-h plasma N 1-methylnicotinamide (1.90 ± 0.20 μmol/l vs. 3.62 ± 0.27 μmol/l, P < 0.01) and homocysteine (12.85 ± 1.39 μmol/l vs. 18.08 ± 1.02 μmol/l, P < 0.05) but a higher level of betaine (27.44 ± 0.71 μmol/l vs. 23.52 ± 0.61 μmol/l, P < 0.05) than that of the NM group. Conclusion: The degradation of nicotinamide consumes more betaine than that of nicotinic acid at identical doses. This difference should be taken into consideration in niacin fortification. © 2016 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism.
Publishing Year
Date Published
2017-08-01
Journal Title
Clinical Nutrition
Acknowledgement
We thank all the participants for their contribution to this study and volunteers from the Nursing School of Dalian University for their supporting to collect blood and urine samples of the participants. We also thank Dr. Yasunori Takayama from National Institute for Physiological Sciences of Japan for his kind help.
Volume
36
Issue
4
Page
1136-1142
ISSN
IST-REx-ID

Cite this

Sun W, Zhai M-Z, Li D, et al. Comparison of the effects of nicotinic acid and nicotinamide degradation on plasma betaine and choline levels. Clinical Nutrition. 2017;36(4):1136-1142. doi:10.1016/j.clnu.2016.07.016
Sun, W., Zhai, M.-Z., Li, D., Zhou, Y., Chen, N., Guo, M., & Zhou, S. (2017). Comparison of the effects of nicotinic acid and nicotinamide degradation on plasma betaine and choline levels. Clinical Nutrition. Elsevier. https://doi.org/10.1016/j.clnu.2016.07.016
Sun, Wuping, Ming-Zhu Zhai, Da Li, Yiming Zhou, Nana Chen, Ming Guo, and Shisheng Zhou. “Comparison of the Effects of Nicotinic Acid and Nicotinamide Degradation on Plasma Betaine and Choline Levels.” Clinical Nutrition. Elsevier, 2017. https://doi.org/10.1016/j.clnu.2016.07.016.
W. Sun et al., “Comparison of the effects of nicotinic acid and nicotinamide degradation on plasma betaine and choline levels,” Clinical Nutrition, vol. 36, no. 4. Elsevier, pp. 1136–1142, 2017.
Sun W, Zhai M-Z, Li D, Zhou Y, Chen N, Guo M, Zhou S. 2017. Comparison of the effects of nicotinic acid and nicotinamide degradation on plasma betaine and choline levels. Clinical Nutrition. 36(4), 1136–1142.
Sun, Wuping, et al. “Comparison of the Effects of Nicotinic Acid and Nicotinamide Degradation on Plasma Betaine and Choline Levels.” Clinical Nutrition, vol. 36, no. 4, Elsevier, 2017, pp. 1136–42, doi:10.1016/j.clnu.2016.07.016.

Export

Marked Publications

Open Data ISTA Research Explorer

Search this title in

Google Scholar