The ALMA spectroscopic survey in the HUDF: Nature and physical properties of gas-mass selected galaxies using MUSE spectroscopy
Boogaard LA, Decarli R, González-López J, van der Werf P, Walter F, Bouwens R, Aravena M, Carilli C, Bauer FE, Brinchmann J, Contini T, Cox P, da Cunha E, Daddi E, Díaz-Santos T, Hodge J, Inami H, Ivison R, Maseda M, Matthee JJ, Oesch P, Popping G, Riechers D, Schaye J, Schouws S, Smail I, Weiss A, Wisotzki L, Bacon R, Cortes PC, Rix H-W, Somerville RS, Swinbank M, Wagg J. 2019. The ALMA spectroscopic survey in the HUDF: Nature and physical properties of gas-mass selected galaxies using MUSE spectroscopy. The Astrophysical Journal. 882(2), 140.
Download (ext.)
https://arxiv.org/abs/1903.09167
[Preprint]
Journal Article
| Published
| English
Scopus indexed
Author
Boogaard, Leindert A.;
Decarli, Roberto;
González-López, Jorge;
van der Werf, Paul;
Walter, Fabian;
Bouwens, Rychard;
Aravena, Manuel;
Carilli, Chris;
Bauer, Franz Erik;
Brinchmann, Jarle;
Contini, Thierry;
Cox, Pierre
All
All
Abstract
We discuss the nature and physical properties of gas-mass selected galaxies in the ALMA spectroscopic survey (ASPECS) of the Hubble Ultra Deep Field (HUDF). We capitalize on the deep optical integral-field spectroscopy from the Multi Unit Spectroscopic Explorer (MUSE) HUDF Survey and multiwavelength data to uniquely associate all 16 line emitters, detected in the ALMA data without preselection, with rotational transitions of carbon monoxide (CO). We identify 10 as CO(2–1) at 1 < z < 2, 5 as CO(3–2) at 2 < z < 3, and 1 as CO(4–3) at z = 3.6. Using the MUSE data as a prior, we identify two additional CO(2–1) emitters, increasing the total sample size to 18. We infer metallicities consistent with (super-)solar for the CO-detected galaxies at z ≤ 1.5, motivating our choice of a Galactic conversion factor between CO luminosity and molecular gas mass for these galaxies. Using deep Chandra imaging of the HUDF, we determine an X-ray AGN fraction of 20% and 60% among the CO emitters at z ∼ 1.4 and z ∼ 2.6, respectively. Being a CO-flux-limited survey, ASPECS-LP detects molecular gas in galaxies on, above, and below the main sequence (MS) at z ∼ 1.4. For stellar masses ≥1010 (1010.5) ${M}_{\odot }$, we detect about 40% (50%) of all galaxies in the HUDF at 1 < z < 2 (2 < z < 3). The combination of ALMA and MUSE integral-field spectroscopy thus enables an unprecedented view of MS galaxies during the peak of galaxy formation.
Publishing Year
Date Published
2019-09-11
Journal Title
The Astrophysical Journal
Publisher
IOP Publishing
Acknowledgement
We are grateful to the referee for providing a constructive report. L.A.B. wants to thank Madusha L.P. Gunawardhana for her help with platefit. Based on observations collected at the European Southern Observatory under ESO programme(s): 094.A-2089(B), 095.A-0010(A), 096.A-0045(A), and 096.A-0045(B). This paper makes use of the following ALMA data: ADS/JAO.ALMA#2016.1.00324.L. ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada), NSC and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO, and NAOJ. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.
"Este trabajo contó con el apoyo de CONICYT+Programa de Astronomía+ Fondo CHINA-CONICYT" J.G-L. acknowledges partial support from ALMA-CONICYT project 31160033. F.E.B. acknowledges support from CONICYT grant Basal AFB-170002 (FEB), and the Ministry of Economy, Development, and Tourism's Millennium Science Initiative through grant IC120009, awarded to The Millennium Institute of Astrophysics, MAS (FEB). J.B. acknowledges support by Fundação para a Ciência e a Tecnologia (FCT) through national funds (UID/FIS/04434/2013) and Investigador FCT contract IF/01654/2014/CP1215/CT0003., and by FEDER through COMPETE2020 (POCI-01-0145-FEDER-007672). T.D-S. acknowledges support from ALMA-CONYCIT project 31130005 and FONDECYT project 1151239. J.H. acknowledges support of the VIDI research programme with project number 639.042.611, which is (partly) financed by the Netherlands Organization for Scientific Research (NWO). D.R. acknowledges support from the National Science Foundation under grant No. AST-1614213. I.R.S. acknowledges support from the ERC Advanced Grant DUSTYGAL (321334) and STFC (ST/P000541/1)
Work on Gnuastro has been funded by the Japanese MEXT scholarship and its Grant-in-Aid for Scientific Research (21244012, 24253003), the ERC advanced grant 339659-MUSICOS, European Union's Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement No. 721463 to the SUNDIAL ITN, and from the Spanish MINECO under grant No. AYA2016-76219-P.
Volume
882
Issue
2
Article Number
140
ISSN
eISSN
IST-REx-ID
Cite this
Boogaard LA, Decarli R, González-López J, et al. The ALMA spectroscopic survey in the HUDF: Nature and physical properties of gas-mass selected galaxies using MUSE spectroscopy. The Astrophysical Journal. 2019;882(2). doi:10.3847/1538-4357/ab3102
Boogaard, L. A., Decarli, R., González-López, J., van der Werf, P., Walter, F., Bouwens, R., … Wagg, J. (2019). The ALMA spectroscopic survey in the HUDF: Nature and physical properties of gas-mass selected galaxies using MUSE spectroscopy. The Astrophysical Journal. IOP Publishing. https://doi.org/10.3847/1538-4357/ab3102
Boogaard, Leindert A., Roberto Decarli, Jorge González-López, Paul van der Werf, Fabian Walter, Rychard Bouwens, Manuel Aravena, et al. “The ALMA Spectroscopic Survey in the HUDF: Nature and Physical Properties of Gas-Mass Selected Galaxies Using MUSE Spectroscopy.” The Astrophysical Journal. IOP Publishing, 2019. https://doi.org/10.3847/1538-4357/ab3102.
L. A. Boogaard et al., “The ALMA spectroscopic survey in the HUDF: Nature and physical properties of gas-mass selected galaxies using MUSE spectroscopy,” The Astrophysical Journal, vol. 882, no. 2. IOP Publishing, 2019.
Boogaard LA, Decarli R, González-López J, van der Werf P, Walter F, Bouwens R, Aravena M, Carilli C, Bauer FE, Brinchmann J, Contini T, Cox P, da Cunha E, Daddi E, Díaz-Santos T, Hodge J, Inami H, Ivison R, Maseda M, Matthee JJ, Oesch P, Popping G, Riechers D, Schaye J, Schouws S, Smail I, Weiss A, Wisotzki L, Bacon R, Cortes PC, Rix H-W, Somerville RS, Swinbank M, Wagg J. 2019. The ALMA spectroscopic survey in the HUDF: Nature and physical properties of gas-mass selected galaxies using MUSE spectroscopy. The Astrophysical Journal. 882(2), 140.
Boogaard, Leindert A., et al. “The ALMA Spectroscopic Survey in the HUDF: Nature and Physical Properties of Gas-Mass Selected Galaxies Using MUSE Spectroscopy.” The Astrophysical Journal, vol. 882, no. 2, 140, IOP Publishing, 2019, doi:10.3847/1538-4357/ab3102.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Link(s) to Main File(s)
Access Level
Open Access
Export
Marked PublicationsOpen Data ISTA Research Explorer
Sources
arXiv 1903.09167