Inferring couplings in networks across order-disorder phase transitions

Ngampruetikorn V, Sachdeva V, Torrence J, Humplik J, Schwab DJ, Palmer SE. 2022. Inferring couplings in networks across order-disorder phase transitions. Physical Review Research. 4(2), 023240.

Download
OA 2022_PhysicalReviewResearch_Ngampruetikorn.pdf 1.38 MB [Published Version]

Journal Article | Published | English

Scopus indexed
Author
Ngampruetikorn, Vudtiwat; Sachdeva, Vedant; Torrence, Johanna; Humplik, JanISTA; Schwab, David J.; Palmer, Stephanie E.
Department
Abstract
Statistical inference is central to many scientific endeavors, yet how it works remains unresolved. Answering this requires a quantitative understanding of the intrinsic interplay between statistical models, inference methods, and the structure in the data. To this end, we characterize the efficacy of direct coupling analysis (DCA)—a highly successful method for analyzing amino acid sequence data—in inferring pairwise interactions from samples of ferromagnetic Ising models on random graphs. Our approach allows for physically motivated exploration of qualitatively distinct data regimes separated by phase transitions. We show that inference quality depends strongly on the nature of data-generating distributions: optimal accuracy occurs at an intermediate temperature where the detrimental effects from macroscopic order and thermal noise are minimal. Importantly our results indicate that DCA does not always outperform its local-statistics-based predecessors; while DCA excels at low temperatures, it becomes inferior to simple correlation thresholding at virtually all temperatures when data are limited. Our findings offer insights into the regime in which DCA operates so successfully, and more broadly, how inference interacts with the structure in the data.
Publishing Year
Date Published
2022-06-24
Journal Title
Physical Review Research
Publisher
American Physical Society
Acknowledgement
This work was supported in part by the Alfred P. Sloan Foundation, the Simons Foundation, the National Institutes of Health under Award No. R01EB026943, and the National Science Foundation, through the Center for the Physics of Biological Function (PHY-1734030).
Volume
4
Issue
2
Article Number
023240
ISSN
Financial disclosure
Article Processing Charge funded by the Deutsche Forschungsgemeinschaft and the Open Access Publication Fund of ISTA.
IST-REx-ID

Cite this

Ngampruetikorn V, Sachdeva V, Torrence J, Humplik J, Schwab DJ, Palmer SE. Inferring couplings in networks across order-disorder phase transitions. Physical Review Research. 2022;4(2). doi:10.1103/PhysRevResearch.4.023240
Ngampruetikorn, V., Sachdeva, V., Torrence, J., Humplik, J., Schwab, D. J., & Palmer, S. E. (2022). Inferring couplings in networks across order-disorder phase transitions. Physical Review Research. American Physical Society. https://doi.org/10.1103/PhysRevResearch.4.023240
Ngampruetikorn, Vudtiwat, Vedant Sachdeva, Johanna Torrence, Jan Humplik, David J. Schwab, and Stephanie E. Palmer. “Inferring Couplings in Networks across Order-Disorder Phase Transitions.” Physical Review Research. American Physical Society, 2022. https://doi.org/10.1103/PhysRevResearch.4.023240.
V. Ngampruetikorn, V. Sachdeva, J. Torrence, J. Humplik, D. J. Schwab, and S. E. Palmer, “Inferring couplings in networks across order-disorder phase transitions,” Physical Review Research, vol. 4, no. 2. American Physical Society, 2022.
Ngampruetikorn V, Sachdeva V, Torrence J, Humplik J, Schwab DJ, Palmer SE. 2022. Inferring couplings in networks across order-disorder phase transitions. Physical Review Research. 4(2), 023240.
Ngampruetikorn, Vudtiwat, et al. “Inferring Couplings in Networks across Order-Disorder Phase Transitions.” Physical Review Research, vol. 4, no. 2, 023240, American Physical Society, 2022, doi:10.1103/PhysRevResearch.4.023240.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
Access Level
OA Open Access
Date Uploaded
2022-07-25
MD5 Checksum
ed6fdc2a3a096df785fa5f7b17b716c6


Export

Marked Publications

Open Data ISTA Research Explorer

Sources

arXiv 2106.02349

Search this title in

Google Scholar