Modular parameter identification of biomolecular networks

Lang M, Stelling J. 2016. Modular parameter identification of biomolecular networks. SIAM Journal on Scientific Computing. 38(6), B988–B1008.

Download
Campus/VPN IST-2017-811-v1+1_modular_parameter_identification.pdf 871.96 KB [Submitted Version]

Journal Article | Published | English

Scopus indexed
Author
Lang, MoritzISTA; Stelling, Jörg
Abstract
The increasing complexity of dynamic models in systems and synthetic biology poses computational challenges especially for the identification of model parameters. While modularization of the corresponding optimization problems could help reduce the “curse of dimensionality,” abundant feedback and crosstalk mechanisms prohibit a simple decomposition of most biomolecular networks into subnetworks, or modules. Drawing on ideas from network modularization and multiple-shooting optimization, we present here a modular parameter identification approach that explicitly allows for such interdependencies. Interfaces between our modules are given by the experimentally measured molecular species. This definition allows deriving good (initial) estimates for the inter-module communication directly from the experimental data. Given these estimates, the states and parameter sensitivities of different modules can be integrated independently. To achieve consistency between modules, we iteratively adjust the estimates for inter-module communication while optimizing the parameters. After convergence to an optimal parameter set---but not during earlier iterations---the intermodule communication as well as the individual modules\' state dynamics agree with the dynamics of the nonmodularized network. Our modular parameter identification approach allows for easy parallelization; it can reduce the computational complexity for larger networks and decrease the probability to converge to suboptimal local minima. We demonstrate the algorithm\'s performance in parameter estimation for two biomolecular networks, a synthetic genetic oscillator and a mammalian signaling pathway.
Publishing Year
Date Published
2016-11-15
Journal Title
SIAM Journal on Scientific Computing
Publisher
Society for Industrial and Applied Mathematics
Volume
38
Issue
6
Page
B988 - B1008
IST-REx-ID

Cite this

Lang M, Stelling J. Modular parameter identification of biomolecular networks. SIAM Journal on Scientific Computing. 2016;38(6):B988-B1008. doi:10.1137/15M103306X
Lang, M., & Stelling, J. (2016). Modular parameter identification of biomolecular networks. SIAM Journal on Scientific Computing. Society for Industrial and Applied Mathematics . https://doi.org/10.1137/15M103306X
Lang, Moritz, and Jörg Stelling. “Modular Parameter Identification of Biomolecular Networks.” SIAM Journal on Scientific Computing. Society for Industrial and Applied Mathematics , 2016. https://doi.org/10.1137/15M103306X.
M. Lang and J. Stelling, “Modular parameter identification of biomolecular networks,” SIAM Journal on Scientific Computing, vol. 38, no. 6. Society for Industrial and Applied Mathematics , pp. B988–B1008, 2016.
Lang M, Stelling J. 2016. Modular parameter identification of biomolecular networks. SIAM Journal on Scientific Computing. 38(6), B988–B1008.
Lang, Moritz, and Jörg Stelling. “Modular Parameter Identification of Biomolecular Networks.” SIAM Journal on Scientific Computing, vol. 38, no. 6, Society for Industrial and Applied Mathematics , 2016, pp. B988–1008, doi:10.1137/15M103306X.
Main File(s)
File Name
IST-2017-811-v1+1_modular_parameter_identification.pdf 871.96 KB
Access Level
Campus/VPN ISTA Only
Date Uploaded
2018-12-12
MD5 Checksum
781bc3ffd30b2dd65b7727c5a285fc78


Export

Marked Publications

Open Data ISTA Research Explorer

Search this title in

Google Scholar