Immobilized iron oxide nanoparticles as stable and reusable catalysts for hydrazine-mediated nitro reductions in continuous flow
Moghaddam MM, Pieber B, Glasnov T, Kappe CO. 2014. Immobilized iron oxide nanoparticles as stable and reusable catalysts for hydrazine-mediated nitro reductions in continuous flow. ChemSusChem. 7(11), 3122–3131.
Download
No fulltext has been uploaded. References only!
Journal Article
| Published
| English
Scopus indexed
Author
Moghaddam, Mojtaba Mirhosseini;
Pieber, BartholomäusISTA ;
Glasnov, Toma;
Kappe, C. Oliver
Abstract
An experimentally easy to perform method for the generation of alumina-supported Fe3O4 nanoparticles [(6±1) nm size, 0.67 wt %]and the use of this material in hydrazine-mediated heterogeneously catalyzed reductions of nitroarenes to anilines under batch and continuous-flow conditions is presented. The bench-stable, reusable nano-Fe3O4@Al2O3 catalyst can selectively reduce functionalized nitroarenes at 1 mol % catalyst loading by using a 20 mol % excess of hydrazine hydrate in an elevated temperature regime (150 °C, reaction time 2–6 min in batch). For continuous-flow processing, the catalyst material is packed into dedicated cartridges and used in a commercially available high-temperature/-pressure flow device. In continuous mode, reaction times can be reduced to less than 1 min at 150 °C (30 bar back pressure) in a highly intensified process. The nano-Fe3O4@Al2O3 catalyst demonstrated stable reduction of nitrobenzene (0.5 M in MeOH) for more than 10 h on stream at a productivity of 30 mmol h−1 (0.72 mol per day). Importantly, virtually no leaching of the catalytically active material could be observed by inductively coupled plasma MS monitoring.
Publishing Year
Date Published
2014-11-01
Journal Title
ChemSusChem
Publisher
Wiley
Volume
7
Issue
11
Page
3122-3131
ISSN
eISSN
IST-REx-ID
Cite this
Moghaddam MM, Pieber B, Glasnov T, Kappe CO. Immobilized iron oxide nanoparticles as stable and reusable catalysts for hydrazine-mediated nitro reductions in continuous flow. ChemSusChem. 2014;7(11):3122-3131. doi:10.1002/cssc.201402455
Moghaddam, M. M., Pieber, B., Glasnov, T., & Kappe, C. O. (2014). Immobilized iron oxide nanoparticles as stable and reusable catalysts for hydrazine-mediated nitro reductions in continuous flow. ChemSusChem. Wiley. https://doi.org/10.1002/cssc.201402455
Moghaddam, Mojtaba Mirhosseini, Bartholomäus Pieber, Toma Glasnov, and C. Oliver Kappe. “Immobilized Iron Oxide Nanoparticles as Stable and Reusable Catalysts for Hydrazine-Mediated Nitro Reductions in Continuous Flow.” ChemSusChem. Wiley, 2014. https://doi.org/10.1002/cssc.201402455.
M. M. Moghaddam, B. Pieber, T. Glasnov, and C. O. Kappe, “Immobilized iron oxide nanoparticles as stable and reusable catalysts for hydrazine-mediated nitro reductions in continuous flow,” ChemSusChem, vol. 7, no. 11. Wiley, pp. 3122–3131, 2014.
Moghaddam MM, Pieber B, Glasnov T, Kappe CO. 2014. Immobilized iron oxide nanoparticles as stable and reusable catalysts for hydrazine-mediated nitro reductions in continuous flow. ChemSusChem. 7(11), 3122–3131.
Moghaddam, Mojtaba Mirhosseini, et al. “Immobilized Iron Oxide Nanoparticles as Stable and Reusable Catalysts for Hydrazine-Mediated Nitro Reductions in Continuous Flow.” ChemSusChem, vol. 7, no. 11, Wiley, 2014, pp. 3122–31, doi:10.1002/cssc.201402455.
Export
Marked PublicationsOpen Data ISTA Research Explorer
Sources
PMID: 25209099
PubMed | Europe PMC