Assessing human iPSC-derived microglia identity and function by immunostaining, phagocytosis, calcium activity, and inflammation assay

Hübschmann V, Korkut M, Siegert S. 2022. Assessing human iPSC-derived microglia identity and function by immunostaining, phagocytosis, calcium activity, and inflammation assay. STAR Protocols. 3(4), 101866.

Download
OA 2022_STARProtocols_Huebschmann.pdf 6.25 MB [Published Version]

Journal Article | Published | English

Scopus indexed
Abstract
To understand how potential gene manipulations affect in vitro microglia, we provide a set of short protocols to evaluate microglia identity and function. We detail steps for immunostaining to determine microglia identity. We describe three functional assays for microglia: phagocytosis, calcium response following ATP stimulation, and cytokine expression upon inflammatory stimuli. We apply these protocols to human induced-pluripotent-stem-cell (hiPSC)-derived microglia, but they can be also applied to other in vitro microglial models including primary mouse microglia. For complete details on the use and execution of this protocol, please refer to Bartalska et al. (2022).1
Publishing Year
Date Published
2022-12-16
Journal Title
STAR Protocols
Acknowledgement
This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant No. 715571 to S.S.) and from the Gesellschaft für Forschungsförderung Niederösterreich (grant No. Sc19-017 to V.H.). We thank Rouven Schulz and Alessandro Venturino for their insights into functional assays and data analysis, Verena Seiboth for insights into necessary institutional permission, and ISTA imaging & optics facility (IOF) especially Bernhard Hochreiter for their support.
Acknowledged SSUs
Volume
3
Issue
4
Article Number
101866
ISSN
IST-REx-ID

Cite this

Hübschmann V, Korkut M, Siegert S. Assessing human iPSC-derived microglia identity and function by immunostaining, phagocytosis, calcium activity, and inflammation assay. STAR Protocols. 2022;3(4). doi:10.1016/j.xpro.2022.101866
Hübschmann, V., Korkut, M., & Siegert, S. (2022). Assessing human iPSC-derived microglia identity and function by immunostaining, phagocytosis, calcium activity, and inflammation assay. STAR Protocols. Elsevier. https://doi.org/10.1016/j.xpro.2022.101866
Hübschmann, Verena, Medina Korkut, and Sandra Siegert. “Assessing Human IPSC-Derived Microglia Identity and Function by Immunostaining, Phagocytosis, Calcium Activity, and Inflammation Assay.” STAR Protocols. Elsevier, 2022. https://doi.org/10.1016/j.xpro.2022.101866.
V. Hübschmann, M. Korkut, and S. Siegert, “Assessing human iPSC-derived microglia identity and function by immunostaining, phagocytosis, calcium activity, and inflammation assay,” STAR Protocols, vol. 3, no. 4. Elsevier, 2022.
Hübschmann V, Korkut M, Siegert S. 2022. Assessing human iPSC-derived microglia identity and function by immunostaining, phagocytosis, calcium activity, and inflammation assay. STAR Protocols. 3(4), 101866.
Hübschmann, Verena, et al. “Assessing Human IPSC-Derived Microglia Identity and Function by Immunostaining, Phagocytosis, Calcium Activity, and Inflammation Assay.” STAR Protocols, vol. 3, no. 4, 101866, Elsevier, 2022, doi:10.1016/j.xpro.2022.101866.
All files available under the following license(s):
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0):
Main File(s)
Access Level
OA Open Access
Date Uploaded
2023-01-23
MD5 Checksum
3c71b8a60633d42c2f77c49025d5559b


Export

Marked Publications

Open Data ISTA Research Explorer

Search this title in

Google Scholar