The isometry group of Wasserstein spaces: The Hilbertian case
Gehér GP, Titkos T, Virosztek D. 2022. The isometry group of Wasserstein spaces: The Hilbertian case. Journal of the London Mathematical Society. 106(4), 3865–3894.
Download (ext.)
https://doi.org/10.48550/arXiv.2102.02037
[Preprint]
Journal Article
| Published
| English
Scopus indexed
Author
Gehér, György Pál;
Titkos, Tamás;
Virosztek, DanielISTA
Department
Abstract
Motivated by Kloeckner’s result on the isometry group of the quadratic Wasserstein space W2(Rn), we describe the isometry group Isom(Wp(E)) for all parameters 0 < p < ∞ and for all separable real Hilbert spaces E. In particular, we show that Wp(X) is isometrically rigid for all Polish space X whenever 0 < p < 1. This is a consequence of our more general result: we prove that W1(X) is isometrically rigid if X is a complete separable metric space that satisfies the strict triangle inequality. Furthermore, we show that this latter rigidity result does not generalise to parameters p > 1, by solving Kloeckner’s problem affirmatively on the existence of mass-splitting isometries.
Keywords
Publishing Year
Date Published
2022-09-18
Journal Title
Journal of the London Mathematical Society
Publisher
Wiley
Acknowledgement
Geher was supported by the Leverhulme Trust Early Career Fellowship (ECF-2018-125), and also by the Hungarian National Research, Development and Innovation Office - NKFIH (grant no. K115383 and K134944).
Titkos was supported by the Hungarian National Research, Development and Innovation Office - NKFIH (grant no. PD128374, grant no. K115383 and K134944), by the J´anos Bolyai Research Scholarship of the Hungarian Academy of Sciences, and by the UNKP-20-5-BGE-1 New National Excellence Program of the ´Ministry of Innovation and Technology.
Virosztek was supported by the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie Grant Agreement No. 846294, by the Momentum program of the Hungarian Academy of Sciences under grant agreement no. LP2021-15/2021, and partially supported by the Hungarian National Research, Development and Innovation Office - NKFIH (grants no. K124152 and no. KH129601).
Volume
106
Issue
4
Page
3865-3894
ISSN
eISSN
IST-REx-ID
Cite this
Gehér GP, Titkos T, Virosztek D. The isometry group of Wasserstein spaces: The Hilbertian case. Journal of the London Mathematical Society. 2022;106(4):3865-3894. doi:10.1112/jlms.12676
Gehér, G. P., Titkos, T., & Virosztek, D. (2022). The isometry group of Wasserstein spaces: The Hilbertian case. Journal of the London Mathematical Society. Wiley. https://doi.org/10.1112/jlms.12676
Gehér, György Pál, Tamás Titkos, and Daniel Virosztek. “The Isometry Group of Wasserstein Spaces: The Hilbertian Case.” Journal of the London Mathematical Society. Wiley, 2022. https://doi.org/10.1112/jlms.12676.
G. P. Gehér, T. Titkos, and D. Virosztek, “The isometry group of Wasserstein spaces: The Hilbertian case,” Journal of the London Mathematical Society, vol. 106, no. 4. Wiley, pp. 3865–3894, 2022.
Gehér GP, Titkos T, Virosztek D. 2022. The isometry group of Wasserstein spaces: The Hilbertian case. Journal of the London Mathematical Society. 106(4), 3865–3894.
Gehér, György Pál, et al. “The Isometry Group of Wasserstein Spaces: The Hilbertian Case.” Journal of the London Mathematical Society, vol. 106, no. 4, Wiley, 2022, pp. 3865–94, doi:10.1112/jlms.12676.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Link(s) to Main File(s)
Access Level
Open Access
Export
Marked PublicationsOpen Data ISTA Research Explorer
Web of Science
View record in Web of Science®Sources
arXiv 2102.02037