Muskelin regulates actin-dependent synaptic changes and intrinsic brain activity relevant to behavioral and cognitive processes
Muhia MW, YuanXiang P, Sedlacik J, Schwarz JR, Heisler FF, Gromova KV, Thies E, Breiden P, Pechmann Y, Kreutz MR, Kneussel M. 2022. Muskelin regulates actin-dependent synaptic changes and intrinsic brain activity relevant to behavioral and cognitive processes. Communications Biology. 5, 589.
Download
Journal Article
| Published
| English
Scopus indexed
Author
Muhia, Mary WISTA;
YuanXiang, PingAn;
Sedlacik, Jan;
Schwarz, Jürgen R.;
Heisler, Frank F.;
Gromova, Kira V.;
Thies, Edda;
Breiden, Petra;
Pechmann, Yvonne;
Kreutz, Michael R.;
Kneussel, Matthias
Corresponding author has ISTA affiliation
Department
Abstract
Muskelin (Mkln1) is implicated in neuronal function, regulating plasma membrane receptor trafficking. However, its influence on intrinsic brain activity and corresponding behavioral processes remains unclear. Here we show that murine <jats:italic>Mkln1</jats:italic> knockout causes non-habituating locomotor activity, increased exploratory drive, and decreased locomotor response to amphetamine. Muskelin deficiency impairs social novelty detection while promoting the retention of spatial reference memory and fear extinction recall. This is strongly mirrored in either weaker or stronger resting-state functional connectivity between critical circuits mediating locomotor exploration and cognition. We show that <jats:italic>Mkln1</jats:italic> deletion alters dendrite branching and spine structure, coinciding with enhanced AMPAR-mediated synaptic transmission but selective impairment in synaptic potentiation maintenance. We identify muskelin at excitatory synapses and highlight its role in regulating dendritic spine actin stability. Our findings point to aberrant spine actin modulation and changes in glutamatergic synaptic function as critical mechanisms that contribute to the neurobehavioral phenotype arising from <jats:italic>Mkln1</jats:italic> ablation.
Keywords
Publishing Year
Date Published
2022-06-15
Journal Title
Communications Biology
Publisher
Springer Nature
Acknowledgement
The authors are grateful to the UKE Animal Facilities (Hamburg) for animal husbandry and Dr. Bastian Tiemann for his veterinary expertise and supervision of animal care. We thank Dr. Franco Lombino for critically reading the manuscript and for helpful discussion. This work was supported by grants from the Deutsche Forschungsgemeinschaft (DFG) (FOR2419-KN556/11-1, FOR2419-KN556/11-2, KN556/12-1) and the Landesforschungsförderung Hamburg (LFF-FV76) to M.K.
Open Access funding enabled and organized by Projekt DEAL.
Volume
5
Article Number
589
ISSN
IST-REx-ID
Cite this
Muhia MW, YuanXiang P, Sedlacik J, et al. Muskelin regulates actin-dependent synaptic changes and intrinsic brain activity relevant to behavioral and cognitive processes. Communications Biology. 2022;5. doi:10.1038/s42003-022-03446-1
Muhia, M. W., YuanXiang, P., Sedlacik, J., Schwarz, J. R., Heisler, F. F., Gromova, K. V., … Kneussel, M. (2022). Muskelin regulates actin-dependent synaptic changes and intrinsic brain activity relevant to behavioral and cognitive processes. Communications Biology. Springer Nature. https://doi.org/10.1038/s42003-022-03446-1
Muhia, Mary W, PingAn YuanXiang, Jan Sedlacik, Jürgen R. Schwarz, Frank F. Heisler, Kira V. Gromova, Edda Thies, et al. “Muskelin Regulates Actin-Dependent Synaptic Changes and Intrinsic Brain Activity Relevant to Behavioral and Cognitive Processes.” Communications Biology. Springer Nature, 2022. https://doi.org/10.1038/s42003-022-03446-1.
M. W. Muhia et al., “Muskelin regulates actin-dependent synaptic changes and intrinsic brain activity relevant to behavioral and cognitive processes,” Communications Biology, vol. 5. Springer Nature, 2022.
Muhia MW, YuanXiang P, Sedlacik J, Schwarz JR, Heisler FF, Gromova KV, Thies E, Breiden P, Pechmann Y, Kreutz MR, Kneussel M. 2022. Muskelin regulates actin-dependent synaptic changes and intrinsic brain activity relevant to behavioral and cognitive processes. Communications Biology. 5, 589.
Muhia, Mary W., et al. “Muskelin Regulates Actin-Dependent Synaptic Changes and Intrinsic Brain Activity Relevant to Behavioral and Cognitive Processes.” Communications Biology, vol. 5, 589, Springer Nature, 2022, doi:10.1038/s42003-022-03446-1.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
File Name
2022_CommBiology_Muhia.pdf
3.97 MB
Access Level
Open Access
Date Uploaded
2023-01-27
MD5 Checksum
bd95be1e77090208b79bc45ea8785d0b
Export
Marked PublicationsOpen Data ISTA Research Explorer