Diversified actin protrusions promote environmental exploration but are dispensable for locomotion of leukocytes
Leithner AF, Eichner A, Müller J, Reversat A, Brown M, Schwarz J, Merrin J, De Gorter D, Schur FK, Bayerl J, de Vries I, Wieser S, Hauschild R, Lai F, Moser M, Kerjaschki D, Rottner K, Small V, Stradal T, Sixt MK. 2016. Diversified actin protrusions promote environmental exploration but are dispensable for locomotion of leukocytes. Nature Cell Biology. 18, 1253–1259.
Download
DOI
Journal Article
| Published
| English
Scopus indexed
Author
Leithner, Alexander FISTA ;
Eichner, AlexanderISTA;
Müller, JanISTA;
Reversat, AnneISTA ;
Brown, MarkusISTA;
Schwarz, JanISTA;
Merrin, JackISTA ;
De Gorter, David;
Schur, FlorianISTA ;
Bayerl, Jonathan;
de Vries, IngridISTA;
Wieser, StefanISTA
All
All
Corresponding author has ISTA affiliation
Grant
Abstract
Most migrating cells extrude their front by the force of actin polymerization. Polymerization requires an initial nucleation step, which is mediated by factors establishing either parallel filaments in the case of filopodia or branched filaments that form the branched lamellipodial network. Branches are considered essential for regular cell motility and are initiated by the Arp2/3 complex, which in turn is activated by nucleation-promoting factors of the WASP and WAVE families. Here we employed rapid amoeboid crawling leukocytes and found that deletion of the WAVE complex eliminated actin branching and thus lamellipodia formation. The cells were left with parallel filaments at the leading edge, which translated, depending on the differentiation status of the cell, into a unipolar pointed cell shape or cells with multiple filopodia. Remarkably, unipolar cells migrated with increased speed and enormous directional persistence, while they were unable to turn towards chemotactic gradients. Cells with multiple filopodia retained chemotactic activity but their migration was progressively impaired with increasing geometrical complexity of the extracellular environment. These findings establish that diversified leading edge protrusions serve as explorative structures while they slow down actual locomotion.
Publishing Year
Date Published
2016-10-24
Journal Title
Nature Cell Biology
Publisher
Nature Publishing Group
Acknowledgement
This work was supported by the German Research Foundation (DFG) Priority Program SP 1464 to T.E.B.S. and M.S., and European Research Council (ERC GA 281556) and Human Frontiers Program grants to M.S.
Service Units of IST Austria for excellent technical support.
Acknowledged SSUs
Volume
18
Page
1253 - 1259
IST-REx-ID
Cite this
Leithner AF, Eichner A, Müller J, et al. Diversified actin protrusions promote environmental exploration but are dispensable for locomotion of leukocytes. Nature Cell Biology. 2016;18:1253-1259. doi:10.1038/ncb3426
Leithner, A. F., Eichner, A., Müller, J., Reversat, A., Brown, M., Schwarz, J., … Sixt, M. K. (2016). Diversified actin protrusions promote environmental exploration but are dispensable for locomotion of leukocytes. Nature Cell Biology. Nature Publishing Group. https://doi.org/10.1038/ncb3426
Leithner, Alexander F, Alexander Eichner, Jan Müller, Anne Reversat, Markus Brown, Jan Schwarz, Jack Merrin, et al. “Diversified Actin Protrusions Promote Environmental Exploration but Are Dispensable for Locomotion of Leukocytes.” Nature Cell Biology. Nature Publishing Group, 2016. https://doi.org/10.1038/ncb3426.
A. F. Leithner et al., “Diversified actin protrusions promote environmental exploration but are dispensable for locomotion of leukocytes,” Nature Cell Biology, vol. 18. Nature Publishing Group, pp. 1253–1259, 2016.
Leithner AF, Eichner A, Müller J, Reversat A, Brown M, Schwarz J, Merrin J, De Gorter D, Schur FK, Bayerl J, de Vries I, Wieser S, Hauschild R, Lai F, Moser M, Kerjaschki D, Rottner K, Small V, Stradal T, Sixt MK. 2016. Diversified actin protrusions promote environmental exploration but are dispensable for locomotion of leukocytes. Nature Cell Biology. 18, 1253–1259.
Leithner, Alexander F., et al. “Diversified Actin Protrusions Promote Environmental Exploration but Are Dispensable for Locomotion of Leukocytes.” Nature Cell Biology, vol. 18, Nature Publishing Group, 2016, pp. 1253–59, doi:10.1038/ncb3426.
All files available under the following license(s):
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0):
Main File(s)
File Name
2018_NatureCell_Leithner.pdf
4.43 MB
Access Level
Open Access
Date Uploaded
2020-05-14
MD5 Checksum
e1411cb7c99a2d9089c178a6abef25e7
Material in ISTA:
Dissertation containing ISTA record