Plasticity-dependent, full detonation at hippocampal mossy fiber–CA3 pyramidal neuron synapses

Vyleta N, Borges Merjane C, Jonas PM. 2016. Plasticity-dependent, full detonation at hippocampal mossy fiber–CA3 pyramidal neuron synapses. eLife. 5, e17977.

Download
OA IST-2016-715-v1+1_e17977-download.pdf 1.48 MB

Journal Article | Published | English

Scopus indexed
Department
Abstract
Mossy fiber synapses on CA3 pyramidal cells are 'conditional detonators' that reliably discharge postsynaptic targets. The 'conditional' nature implies that burst activity in dentate gyrus granule cells is required for detonation. Whether single unitary excitatory postsynaptic potentials (EPSPs) trigger spikes in CA3 neurons remains unknown. Mossy fiber synapses exhibit both pronounced short-term facilitation and uniquely large post-tetanic potentiation (PTP). We tested whether PTP could convert mossy fiber synapses from subdetonator into detonator mode, using a recently developed method to selectively and noninvasively stimulate individual presynaptic terminals in rat brain slices. Unitary EPSPs failed to initiate a spike in CA3 neurons under control conditions, but reliably discharged them after induction of presynaptic short-term plasticity. Remarkably, PTP switched mossy fiber synapses into full detonators for tens of seconds. Plasticity-dependent detonation may be critical for efficient coding, storage, and recall of information in the granule cell–CA3 cell network.
Publishing Year
Date Published
2016-10-25
Journal Title
eLife
Volume
5
Article Number
e17977
IST-REx-ID

Cite this

Vyleta N, Borges Merjane C, Jonas PM. Plasticity-dependent, full detonation at hippocampal mossy fiber–CA3 pyramidal neuron synapses. eLife. 2016;5. doi:10.7554/eLife.17977
Vyleta, N., Borges Merjane, C., & Jonas, P. M. (2016). Plasticity-dependent, full detonation at hippocampal mossy fiber–CA3 pyramidal neuron synapses. ELife. eLife Sciences Publications. https://doi.org/10.7554/eLife.17977
Vyleta, Nicholas, Carolina Borges Merjane, and Peter M Jonas. “Plasticity-Dependent, Full Detonation at Hippocampal Mossy Fiber–CA3 Pyramidal Neuron Synapses.” ELife. eLife Sciences Publications, 2016. https://doi.org/10.7554/eLife.17977.
N. Vyleta, C. Borges Merjane, and P. M. Jonas, “Plasticity-dependent, full detonation at hippocampal mossy fiber–CA3 pyramidal neuron synapses,” eLife, vol. 5. eLife Sciences Publications, 2016.
Vyleta N, Borges Merjane C, Jonas PM. 2016. Plasticity-dependent, full detonation at hippocampal mossy fiber–CA3 pyramidal neuron synapses. eLife. 5, e17977.
Vyleta, Nicholas, et al. “Plasticity-Dependent, Full Detonation at Hippocampal Mossy Fiber–CA3 Pyramidal Neuron Synapses.” ELife, vol. 5, e17977, eLife Sciences Publications, 2016, doi:10.7554/eLife.17977.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
Access Level
OA Open Access
Date Uploaded
2018-12-12
MD5 Checksum
a7201280c571bed88ebd459ce5ce6a47


Export

Marked Publications

Open Data ISTA Research Explorer

Search this title in

Google Scholar