SQUID-on-tip with single-electron spin sensitivity for high-field and ultra-low temperature nanomagnetic imaging
Anahory Y, Naren HR, Lachman EO, Sinai SB, Uri A, Embon L, Yaakobi E, Myasoedov Y, Huber ME, Klajn R, Zeldov E. 2020. SQUID-on-tip with single-electron spin sensitivity for high-field and ultra-low temperature nanomagnetic imaging. Nanoscale. 12(5), 3174–3182.
Download (ext.)
https://doi.org/10.48550/arXiv.2001.03342
[Preprint]
Journal Article
| Published
| English
Scopus indexed
Author
Anahory, Y.;
Naren, H. R.;
Lachman, E. O.;
Sinai, S. Buhbut;
Uri, A.;
Embon, L.;
Yaakobi, E.;
Myasoedov, Y.;
Huber, M. E.;
Klajn, RafalISTA;
Zeldov, E.
Abstract
Scanning nanoscale superconducting quantum interference devices (nanoSQUIDs)
are of growing interest for highly sensitive quantitative imaging of magnetic,
spintronic, and transport properties of low-dimensional systems. Utilizing
specifically designed grooved quartz capillaries pulled into a sharp pipette,
we have fabricated the smallest SQUID-on-tip (SOT) devices with effective
diameters down to 39 nm. Integration of a resistive shunt in close proximity to
the pipette apex combined with self-aligned deposition of In and Sn, have
resulted in SOT with a flux noise of 42 n$\Phi_0$Hz$^{-1/2}$, yielding a record
low spin noise of 0.29 $\mu_B$Hz$^{-1/2}$. In addition, the new SOTs function
at sub-Kelvin temperatures and in high magnetic fields of over 2.5 T.
Integrating the SOTs into a scanning probe microscope allowed us to image the
stray field of a single Fe$_3$O$_4$ nanocube at 300 mK. Our results show that
the easy magnetization axis direction undergoes a transition from the (111)
direction at room temperature to an in-plane orientation, which could be
attributed to the Verwey phase transition in Fe$_3$O$_4$.
Publishing Year
Date Published
2020-01-10
Journal Title
Nanoscale
Publisher
Royal Society of Chemistry
Volume
12
Issue
5
Page
3174-3182
eISSN
IST-REx-ID
Cite this
Anahory Y, Naren HR, Lachman EO, et al. SQUID-on-tip with single-electron spin sensitivity for high-field and ultra-low temperature nanomagnetic imaging. Nanoscale. 2020;12(5):3174-3182. doi:10.1039/C9NR08578E
Anahory, Y., Naren, H. R., Lachman, E. O., Sinai, S. B., Uri, A., Embon, L., … Zeldov, E. (2020). SQUID-on-tip with single-electron spin sensitivity for high-field and ultra-low temperature nanomagnetic imaging. Nanoscale. Royal Society of Chemistry. https://doi.org/10.1039/C9NR08578E
Anahory, Y., H. R. Naren, E. O. Lachman, S. Buhbut Sinai, A. Uri, L. Embon, E. Yaakobi, et al. “SQUID-on-Tip with Single-Electron Spin Sensitivity for High-Field and Ultra-Low Temperature Nanomagnetic Imaging.” Nanoscale. Royal Society of Chemistry, 2020. https://doi.org/10.1039/C9NR08578E.
Y. Anahory et al., “SQUID-on-tip with single-electron spin sensitivity for high-field and ultra-low temperature nanomagnetic imaging,” Nanoscale, vol. 12, no. 5. Royal Society of Chemistry, pp. 3174–3182, 2020.
Anahory Y, Naren HR, Lachman EO, Sinai SB, Uri A, Embon L, Yaakobi E, Myasoedov Y, Huber ME, Klajn R, Zeldov E. 2020. SQUID-on-tip with single-electron spin sensitivity for high-field and ultra-low temperature nanomagnetic imaging. Nanoscale. 12(5), 3174–3182.
Anahory, Y., et al. “SQUID-on-Tip with Single-Electron Spin Sensitivity for High-Field and Ultra-Low Temperature Nanomagnetic Imaging.” Nanoscale, vol. 12, no. 5, Royal Society of Chemistry, 2020, pp. 3174–82, doi:10.1039/C9NR08578E.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Link(s) to Main File(s)
Access Level
Open Access
Export
Marked PublicationsOpen Data ISTA Research Explorer
Sources
arXiv 2001.03342