Reversible trapping and reaction acceleration within dynamically self-assembling nanoflasks
Zhao H, Sen S, Udayabhaskararao T, Sawczyk M, Kučanda K, Manna D, Kundu PK, Lee J-W, Král P, Klajn R. 2015. Reversible trapping and reaction acceleration within dynamically self-assembling nanoflasks. Nature Nanotechnology. 11, 82–88.
Download
No fulltext has been uploaded. References only!
Journal Article
| Published
| English
Scopus indexed
Author
Zhao, Hui;
Sen, Soumyo;
Udayabhaskararao, T.;
Sawczyk, Michał;
Kučanda, Kristina;
Manna, Debasish;
Kundu, Pintu K.;
Lee, Ji-Woong;
Král, Petr;
Klajn, RafalISTA
Abstract
The chemical behaviour of molecules can be significantly modified by confinement to volumes comparable to the dimensions of the molecules. Although such confined spaces can be found in various nanostructured materials, such as zeolites, nanoporous organic frameworks and colloidal nanocrystal assemblies, the slow diffusion of molecules in and out of these materials has greatly hampered studying the effect of confinement on their physicochemical properties. Here, we show that this diffusion limitation can be overcome by reversibly creating and destroying confined environments by means of ultraviolet and visible light irradiation. We use colloidal nanocrystals functionalized with light-responsive ligands that readily self-assemble and trap various molecules from the surrounding bulk solution. Once trapped, these molecules can undergo chemical reactions with increased rates and with stereoselectivities significantly different from those in bulk solution. Illumination with visible light disassembles these nanoflasks, releasing the product in solution and thereby establishes a catalytic cycle. These dynamic nanoflasks can be useful for studying chemical reactivities in confined environments and for synthesizing molecules that are otherwise hard to achieve in bulk solution.
Keywords
Publishing Year
Date Published
2015-11-23
Journal Title
Nature Nanotechnology
Publisher
Springer Nature
Volume
11
Page
82-88
ISSN
eISSN
IST-REx-ID
Cite this
Zhao H, Sen S, Udayabhaskararao T, et al. Reversible trapping and reaction acceleration within dynamically self-assembling nanoflasks. Nature Nanotechnology. 2015;11:82-88. doi:10.1038/nnano.2015.256
Zhao, H., Sen, S., Udayabhaskararao, T., Sawczyk, M., Kučanda, K., Manna, D., … Klajn, R. (2015). Reversible trapping and reaction acceleration within dynamically self-assembling nanoflasks. Nature Nanotechnology. Springer Nature. https://doi.org/10.1038/nnano.2015.256
Zhao, Hui, Soumyo Sen, T. Udayabhaskararao, Michał Sawczyk, Kristina Kučanda, Debasish Manna, Pintu K. Kundu, Ji-Woong Lee, Petr Král, and Rafal Klajn. “Reversible Trapping and Reaction Acceleration within Dynamically Self-Assembling Nanoflasks.” Nature Nanotechnology. Springer Nature, 2015. https://doi.org/10.1038/nnano.2015.256.
H. Zhao et al., “Reversible trapping and reaction acceleration within dynamically self-assembling nanoflasks,” Nature Nanotechnology, vol. 11. Springer Nature, pp. 82–88, 2015.
Zhao H, Sen S, Udayabhaskararao T, Sawczyk M, Kučanda K, Manna D, Kundu PK, Lee J-W, Král P, Klajn R. 2015. Reversible trapping and reaction acceleration within dynamically self-assembling nanoflasks. Nature Nanotechnology. 11, 82–88.
Zhao, Hui, et al. “Reversible Trapping and Reaction Acceleration within Dynamically Self-Assembling Nanoflasks.” Nature Nanotechnology, vol. 11, Springer Nature, 2015, pp. 82–88, doi:10.1038/nnano.2015.256.
Export
Marked PublicationsOpen Data ISTA Research Explorer
Sources
PMID: 26595335
PubMed | Europe PMC