Optical and electronic signal stabilization of plasmonic fiber optic gate electrodes: Towards improved real-time dual-mode biosensing

Hasler R, Steger-Polt MH, Reiner-Rozman C, Fossati S, Lee S, Aspermair P, Kleber C, Ibáñez M, Dostalek J, Knoll W. 2023. Optical and electronic signal stabilization of plasmonic fiber optic gate electrodes: Towards improved real-time dual-mode biosensing. Frontiers in Physics. 11, 1202132.

Download
OA 2023_FrontiersPhysics_Hasler.pdf 2.42 MB [Published Version]

Journal Article | Published | English

Scopus indexed
Author
Hasler, Roger; Steger-Polt, Marie Helene; Reiner-Rozman, Ciril; Fossati, Stefan; Lee, SeunghoISTA ; Aspermair, Patrik; Kleber, Christoph; Ibáñez , MariaISTA ; Dostalek, Jakub; Knoll, Wolfgang
Department
Abstract
The use of multimodal readout mechanisms next to label-free real-time monitoring of biomolecular interactions can provide valuable insight into surface-based reaction mechanisms. To this end, the combination of an electrolyte-gated field-effect transistor (EG-FET) with a fiber optic-coupled surface plasmon resonance (FO-SPR) probe serving as gate electrode has been investigated to deconvolute surface mass and charge density variations associated to surface reactions. However, applying an electrochemical potential on such gold-coated FO-SPR gate electrodes can induce gradual morphological changes of the thin gold film, leading to an irreversible blue-shift of the SPR wavelength and a substantial signal drift. We show that mild annealing leads to optical and electronic signal stabilization (20-fold lower signal drift than as-sputtered fiber optic gates) and improved overall analytical performance characteristics. The thermal treatment prevents morphological changes of the thin gold-film occurring during operation, hence providing reliable and stable data immediately upon gate voltage application. Thus, the readout output of both transducing principles, the optical FO-SPR and electronic EG-FET, stays constant throughout the whole sensing time-window and the long-term effect of thermal treatment is also improved, providing stable signals even after 1 year of storage. Annealing should therefore be considered a necessary modification for applying fiber optic gate electrodes in real-time multimodal investigations of surface reactions at the solid-liquid interface.
Publishing Year
Date Published
2023-07-14
Journal Title
Frontiers in Physics
Publisher
Frontiers
Acknowledgement
This project has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-Curie grant agreement No. 813863–BORGES. We further thank the office of the Federal Government of Lower Austria, K3-Group–Culture, Science and Education, for their financial support as part of the project “Responsive Wound Dressing”. We gratefully acknowledge the financial support from the Austrian Research Promotion Agency (FFG; 888067). We thank the Electron Microscopy Facility at IST Austria for their support with sputter coating the FO tips and Bernhard Pichler from AIT for software development to facilitate data evaluation.
Acknowledged SSUs
Volume
11
Article Number
1202132
eISSN
IST-REx-ID

Cite this

Hasler R, Steger-Polt MH, Reiner-Rozman C, et al. Optical and electronic signal stabilization of plasmonic fiber optic gate electrodes: Towards improved real-time dual-mode biosensing. Frontiers in Physics. 2023;11. doi:10.3389/fphy.2023.1202132
Hasler, R., Steger-Polt, M. H., Reiner-Rozman, C., Fossati, S., Lee, S., Aspermair, P., … Knoll, W. (2023). Optical and electronic signal stabilization of plasmonic fiber optic gate electrodes: Towards improved real-time dual-mode biosensing. Frontiers in Physics. Frontiers. https://doi.org/10.3389/fphy.2023.1202132
Hasler, Roger, Marie Helene Steger-Polt, Ciril Reiner-Rozman, Stefan Fossati, Seungho Lee, Patrik Aspermair, Christoph Kleber, Maria Ibáñez, Jakub Dostalek, and Wolfgang Knoll. “Optical and Electronic Signal Stabilization of Plasmonic Fiber Optic Gate Electrodes: Towards Improved Real-Time Dual-Mode Biosensing.” Frontiers in Physics. Frontiers, 2023. https://doi.org/10.3389/fphy.2023.1202132.
R. Hasler et al., “Optical and electronic signal stabilization of plasmonic fiber optic gate electrodes: Towards improved real-time dual-mode biosensing,” Frontiers in Physics, vol. 11. Frontiers, 2023.
Hasler R, Steger-Polt MH, Reiner-Rozman C, Fossati S, Lee S, Aspermair P, Kleber C, Ibáñez M, Dostalek J, Knoll W. 2023. Optical and electronic signal stabilization of plasmonic fiber optic gate electrodes: Towards improved real-time dual-mode biosensing. Frontiers in Physics. 11, 1202132.
Hasler, Roger, et al. “Optical and Electronic Signal Stabilization of Plasmonic Fiber Optic Gate Electrodes: Towards Improved Real-Time Dual-Mode Biosensing.” Frontiers in Physics, vol. 11, 1202132, Frontiers, 2023, doi:10.3389/fphy.2023.1202132.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
Access Level
OA Open Access
Date Uploaded
2023-08-07
MD5 Checksum
fb36dda665e57bab006a000bf0faacd5


Export

Marked Publications

Open Data ISTA Research Explorer

Web of Science

View record in Web of Science®

Search this title in

Google Scholar