Superconductivity from a melted insulator in Josephson junction arrays

Mukhopadhyay S, Senior JL, Saez Mollejo J, Puglia D, Zemlicka M, Fink JM, Higginbotham AP. 2023. Superconductivity from a melted insulator in Josephson junction arrays. Nature Physics. 19, 1630–1635.

Download
OA 2023_NaturePhysics_Mukhopadhyay.pdf 1.98 MB [Published Version]

Journal Article | Published | English

Scopus indexed

Corresponding author has ISTA affiliation

Abstract
Arrays of Josephson junctions are governed by a competition between superconductivity and repulsive Coulomb interactions, and are expected to exhibit diverging low-temperature resistance when interactions exceed a critical level. Here we report a study of the transport and microwave response of Josephson arrays with interactions exceeding this level. Contrary to expectations, we observe that the array resistance drops dramatically as the temperature is decreased—reminiscent of superconducting behaviour—and then saturates at low temperature. Applying a magnetic field, we eventually observe a transition to a highly resistive regime. These observations can be understood within a theoretical picture that accounts for the effect of thermal fluctuations on the insulating phase. On the basis of the agreement between experiment and theory, we suggest that apparent superconductivity in our Josephson arrays arises from melting the zero-temperature insulator.
Publishing Year
Date Published
2023-11-01
Journal Title
Nature Physics
Publisher
Springer Nature
Acknowledgement
We thank D. Haviland, J. Pekola, C. Ciuti, A. Bubis and A. Shnirman for helpful feedback on the paper. This research was supported by the Scientific Service Units of IST Austria through resources provided by the MIBA Machine Shop and the Nanofabrication Facility. Work supported by the Austrian FWF grant P33692-N (S.M., J.S. and A.P.H.), the European Union’s Horizon 2020 Research and Innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 754411 (J.S.) and a NOMIS foundation research grant (J.M.F. and A.P.H.).
Volume
19
Page
1630-1635
ISSN
eISSN
IST-REx-ID

Cite this

Mukhopadhyay S, Senior JL, Saez Mollejo J, et al. Superconductivity from a melted insulator in Josephson junction arrays. Nature Physics. 2023;19:1630-1635. doi:10.1038/s41567-023-02161-w
Mukhopadhyay, S., Senior, J. L., Saez Mollejo, J., Puglia, D., Zemlicka, M., Fink, J. M., & Higginbotham, A. P. (2023). Superconductivity from a melted insulator in Josephson junction arrays. Nature Physics. Springer Nature. https://doi.org/10.1038/s41567-023-02161-w
Mukhopadhyay, Soham, Jorden L Senior, Jaime Saez Mollejo, Denise Puglia, Martin Zemlicka, Johannes M Fink, and Andrew P Higginbotham. “Superconductivity from a Melted Insulator in Josephson Junction Arrays.” Nature Physics. Springer Nature, 2023. https://doi.org/10.1038/s41567-023-02161-w.
S. Mukhopadhyay et al., “Superconductivity from a melted insulator in Josephson junction arrays,” Nature Physics, vol. 19. Springer Nature, pp. 1630–1635, 2023.
Mukhopadhyay S, Senior JL, Saez Mollejo J, Puglia D, Zemlicka M, Fink JM, Higginbotham AP. 2023. Superconductivity from a melted insulator in Josephson junction arrays. Nature Physics. 19, 1630–1635.
Mukhopadhyay, Soham, et al. “Superconductivity from a Melted Insulator in Josephson Junction Arrays.” Nature Physics, vol. 19, Springer Nature, 2023, pp. 1630–35, doi:10.1038/s41567-023-02161-w.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
Access Level
OA Open Access
Date Uploaded
2024-01-29
MD5 Checksum
1fc86d71bfbf836e221c1e925343adc5


Material in ISTA:
Dissertation containing ISTA record

Export

Marked Publications

Open Data ISTA Research Explorer

Web of Science

View record in Web of Science®

Search this title in

Google Scholar