Genetic insights into the age-specific biological mechanisms governing human ovarian aging

Ojavee SE, Darrous L, Patxot M, Läll K, Fischer K, Mägi R, Kutalik Z, Robinson MR. 2023. Genetic insights into the age-specific biological mechanisms governing human ovarian aging. American Journal of Human Genetics. 110(9), 1549–1563.

Download
OA 2023_AJHG_Ojavee.pdf 2.55 MB [Published Version]

Journal Article | Published | English

Scopus indexed
Author
Ojavee, Sven E.; Darrous, Liza; Patxot, Marion; Läll, Kristi; Fischer, Krista; Mägi, Reedik; Kutalik, Zoltan; Robinson, Matthew RichardISTA

Corresponding author has ISTA affiliation

Department
Abstract
There is currently little evidence that the genetic basis of human phenotype varies significantly across the lifespan. However, time-to-event phenotypes are understudied and can be thought of as reflecting an underlying hazard, which is unlikely to be constant through life when values take a broad range. Here, we find that 74% of 245 genome-wide significant genetic associations with age at natural menopause (ANM) in the UK Biobank show a form of age-specific effect. Nineteen of these replicated discoveries are identified only by our modeling framework, which determines the time dependency of DNA-variant age-at-onset associations without a significant multiple-testing burden. Across the range of early to late menopause, we find evidence for significantly different underlying biological pathways, changes in the signs of genetic correlations of ANM to health indicators and outcomes, and differences in inferred causal relationships. We find that DNA damage response processes only act to shape ovarian reserve and depletion for women of early ANM. Genetically mediated delays in ANM were associated with increased relative risk of breast cancer and leiomyoma at all ages and with high cholesterol and heart failure for late-ANM women. These findings suggest that a better understanding of the age dependency of genetic risk factor relationships among health indicators and outcomes is achievable through appropriate statistical modeling of large-scale biobank data.
Publishing Year
Date Published
2023-09-07
Journal Title
American Journal of Human Genetics
Publisher
Elsevier
Acknowledgement
This project was funded by an SNSF Eccellenza grant to M.R.R. (PCEGP3-181181) and by core funding from the Institute of Science and Technology Austria. K.L. and R.M. were supported by the Estonian Research Council grant 1911. Estonian Biobank computations were performed in the High-Performance Computing Center, University of Tartu. We thank Triin Laisk for her valuable insights and comments that helped greatly. We would like to acknowledge the participants and investigators of UK Biobank and Estonian Biobank studies. This project uses UK Biobank data under project number 35520.
Volume
110
Issue
9
Page
1549-1563
ISSN
eISSN
IST-REx-ID

Cite this

Ojavee SE, Darrous L, Patxot M, et al. Genetic insights into the age-specific biological mechanisms governing human ovarian aging. American Journal of Human Genetics. 2023;110(9):1549-1563. doi:10.1016/j.ajhg.2023.07.006
Ojavee, S. E., Darrous, L., Patxot, M., Läll, K., Fischer, K., Mägi, R., … Robinson, M. R. (2023). Genetic insights into the age-specific biological mechanisms governing human ovarian aging. American Journal of Human Genetics. Elsevier. https://doi.org/10.1016/j.ajhg.2023.07.006
Ojavee, Sven E., Liza Darrous, Marion Patxot, Kristi Läll, Krista Fischer, Reedik Mägi, Zoltan Kutalik, and Matthew Richard Robinson. “Genetic Insights into the Age-Specific Biological Mechanisms Governing Human Ovarian Aging.” American Journal of Human Genetics. Elsevier, 2023. https://doi.org/10.1016/j.ajhg.2023.07.006.
S. E. Ojavee et al., “Genetic insights into the age-specific biological mechanisms governing human ovarian aging,” American Journal of Human Genetics, vol. 110, no. 9. Elsevier, pp. 1549–1563, 2023.
Ojavee SE, Darrous L, Patxot M, Läll K, Fischer K, Mägi R, Kutalik Z, Robinson MR. 2023. Genetic insights into the age-specific biological mechanisms governing human ovarian aging. American Journal of Human Genetics. 110(9), 1549–1563.
Ojavee, Sven E., et al. “Genetic Insights into the Age-Specific Biological Mechanisms Governing Human Ovarian Aging.” American Journal of Human Genetics, vol. 110, no. 9, Elsevier, 2023, pp. 1549–63, doi:10.1016/j.ajhg.2023.07.006.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
File Name
Access Level
OA Open Access
Date Uploaded
2024-01-30
MD5 Checksum
4108b031dc726ae6b4a5ae7e021ba188


Export

Marked Publications

Open Data ISTA Research Explorer

Sources

PMID: 37543033
PubMed | Europe PMC

Search this title in

Google Scholar