Specific growth rate and multiplicity of infection affect high-cell-density fermentation with bacteriophage M13 for ssDNA production

Kick B, Hensler S, Praetorius FM, Dietz H, Weuster-Botz D. 2017. Specific growth rate and multiplicity of infection affect high-cell-density fermentation with bacteriophage M13 for ssDNA production. Biotechnology and Bioengineering. 114(4), 777–784.

Download
No fulltext has been uploaded. References only!

Journal Article | Published | English

Scopus indexed
Author
Kick, Benjamin; Hensler, Samantha; Praetorius, Florian MISTA; Dietz, Hendrik; Weuster-Botz, Dirk
Abstract
The bacteriophage M13 has found frequent applications in nanobiotechnology due to its chemically and genetically tunable protein surface and its ability to self-assemble into colloidal membranes. Additionally, its single-stranded (ss) genome is commonly used as scaffold for DNA origami. Despite the manifold uses of M13, upstream production methods for phage and scaffold ssDNA are underexamined with respect to future industrial usage. Here, the high-cell-density phage production with Escherichia coli as host organism was studied in respect of medium composition, infection time, multiplicity of infection, and specific growth rate. The specific growth rate and the multiplicity of infection were identified as the crucial state variables that influence phage amplification rate on one hand and the concentration of produced ssDNA on the other hand. Using a growth rate of 0.15 h−1 and a multiplicity of infection of 0.05 pfu cfu−1 in the fed-batch production process, the concentration of pure isolated M13 ssDNA usable for scaffolded DNA origami could be enhanced by 54% to 590 mg L−1. Thus, our results help enabling M13 production for industrial uses in nanobiotechnology. Biotechnol. Bioeng. 2017;114: 777–784.
Publishing Year
Date Published
2017-04-01
Journal Title
Biotechnology and Bioengineering
Publisher
Wiley
Volume
114
Issue
4
Page
777-784
ISSN
IST-REx-ID

Cite this

Kick B, Hensler S, Praetorius FM, Dietz H, Weuster-Botz D. Specific growth rate and multiplicity of infection affect high-cell-density fermentation with bacteriophage M13 for ssDNA production. Biotechnology and Bioengineering. 2017;114(4):777-784. doi:10.1002/bit.26200
Kick, B., Hensler, S., Praetorius, F. M., Dietz, H., & Weuster-Botz, D. (2017). Specific growth rate and multiplicity of infection affect high-cell-density fermentation with bacteriophage M13 for ssDNA production. Biotechnology and Bioengineering. Wiley. https://doi.org/10.1002/bit.26200
Kick, Benjamin, Samantha Hensler, Florian M Praetorius, Hendrik Dietz, and Dirk Weuster-Botz. “Specific Growth Rate and Multiplicity of Infection Affect High-Cell-Density Fermentation with Bacteriophage M13 for SsDNA Production.” Biotechnology and Bioengineering. Wiley, 2017. https://doi.org/10.1002/bit.26200.
B. Kick, S. Hensler, F. M. Praetorius, H. Dietz, and D. Weuster-Botz, “Specific growth rate and multiplicity of infection affect high-cell-density fermentation with bacteriophage M13 for ssDNA production,” Biotechnology and Bioengineering, vol. 114, no. 4. Wiley, pp. 777–784, 2017.
Kick B, Hensler S, Praetorius FM, Dietz H, Weuster-Botz D. 2017. Specific growth rate and multiplicity of infection affect high-cell-density fermentation with bacteriophage M13 for ssDNA production. Biotechnology and Bioengineering. 114(4), 777–784.
Kick, Benjamin, et al. “Specific Growth Rate and Multiplicity of Infection Affect High-Cell-Density Fermentation with Bacteriophage M13 for SsDNA Production.” Biotechnology and Bioengineering, vol. 114, no. 4, Wiley, 2017, pp. 777–84, doi:10.1002/bit.26200.

Export

Marked Publications

Open Data ISTA Research Explorer

Sources

PMID: 27748519
PubMed | Europe PMC

Search this title in

Google Scholar