Optimal embedded and enclosing isosceles triangles
Ambrus Á, Csikós M, Kiss G, Pach J, Somlai G. 2023. Optimal embedded and enclosing isosceles triangles. International Journal of Foundations of Computer Science. 34(7), 737–760.
Download (ext.)
https://doi.org/10.48550/arXiv.2205.11637
[Preprint]
Journal Article
| Published
| English
Scopus indexed
Author
Ambrus, Áron;
Csikós, Mónika;
Kiss, Gergely;
Pach, JánosISTA;
Somlai, Gábor
Department
Abstract
Given a triangle Δ, we study the problem of determining the smallest enclosing and largest embedded isosceles triangles of Δ with respect to area and perimeter. This problem was initially posed by Nandakumar [17, 22] and was first studied by Kiss, Pach, and Somlai [13], who showed that if Δ′ is the smallest area isosceles triangle containing Δ, then Δ′ and Δ share a side and an angle. In the present paper, we prove that for any triangle Δ, every maximum area isosceles triangle embedded in Δ and every maximum perimeter isosceles triangle embedded in Δ shares a side and an angle with Δ. Somewhat surprisingly, the case of minimum perimeter enclosing triangles is different: there are infinite families of triangles Δ whose minimum perimeter isosceles containers do not share a side and an angle with Δ.
Publishing Year
Date Published
2023-10-05
Journal Title
International Journal of Foundations of Computer Science
Volume
34
Issue
7
Page
737-760
ISSN
eISSN
IST-REx-ID
Cite this
Ambrus Á, Csikós M, Kiss G, Pach J, Somlai G. Optimal embedded and enclosing isosceles triangles. International Journal of Foundations of Computer Science. 2023;34(7):737-760. doi:10.1142/S012905412342008X
Ambrus, Á., Csikós, M., Kiss, G., Pach, J., & Somlai, G. (2023). Optimal embedded and enclosing isosceles triangles. International Journal of Foundations of Computer Science. World Scientific Publishing. https://doi.org/10.1142/S012905412342008X
Ambrus, Áron, Mónika Csikós, Gergely Kiss, János Pach, and Gábor Somlai. “Optimal Embedded and Enclosing Isosceles Triangles.” International Journal of Foundations of Computer Science. World Scientific Publishing, 2023. https://doi.org/10.1142/S012905412342008X.
Á. Ambrus, M. Csikós, G. Kiss, J. Pach, and G. Somlai, “Optimal embedded and enclosing isosceles triangles,” International Journal of Foundations of Computer Science, vol. 34, no. 7. World Scientific Publishing, pp. 737–760, 2023.
Ambrus Á, Csikós M, Kiss G, Pach J, Somlai G. 2023. Optimal embedded and enclosing isosceles triangles. International Journal of Foundations of Computer Science. 34(7), 737–760.
Ambrus, Áron, et al. “Optimal Embedded and Enclosing Isosceles Triangles.” International Journal of Foundations of Computer Science, vol. 34, no. 7, World Scientific Publishing, 2023, pp. 737–60, doi:10.1142/S012905412342008X.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Link(s) to Main File(s)
Access Level
Open Access
Export
Marked PublicationsOpen Data ISTA Research Explorer
Web of Science
View record in Web of Science®Sources
arXiv 2205.11637