Stress granules plug and stabilize damaged endolysosomal membranes

Vanhille-Campos CE, Šarić A. 2023. Stress granules plug and stabilize damaged endolysosomal membranes, Institute of Science and Technology Austria, 10.15479/AT:ISTA:14472.

Download
OA SGporecondensation-main.zip 62.82 MB [Published Version] OA README.txt 1.70 KB

Research Data

Corresponding author has ISTA affiliation

Department
Abstract
Data related to the following paper: "Stress granules plug and stabilize damaged endolysosomal membranes" (https://doi.org/10.1038/s41586-023-06726-w) Abstract: Endomembrane damage represents a form of stress that is detrimental for eukaryotic cells. To cope with this threat, cells possess mechanisms that repair the damage and restore cellular homeostasis. Endomembrane damage also results in organelle instability and the mechanisms by which cells stabilize damaged endomembranes to enable membrane repair remains unknown. In this work we use a minimal coarse-grained molecular dynamics system to explore how lipid vesicles undergoing poration in a protein-rich medium can be plugged and stabilised by condensate formation. The solution of proteins in and out of the vesicle is described by beads dispersed in implicit solvent. The membrane is described as a one-bead-thick fluid elastic layer of mechanical properties that mimic biological membranes. We tune the interactions between solution beads in the different compartments to capture the differences between the cytoplasmic and endosomal protein solutions and explore how the system responds to different degrees of membrane poration. We find that, in the right interaction regime, condensates form rapidly at the damage site upon solution mixing and act as a plug that prevents futher mixing and destabilisation of the vesicle. Further, when the condensate can interact with the membrane (wetting interactions) we find that it mediates pore sealing and membrane repair. This research is part of the work published in "Stress granules plug and stabilize damaged endolysosomal membranes", Bussi et al, Nature, 2023 - 10.1038/s41586-023-06726-w.
Publishing Year
Date Published
2023-10-31
Publisher
Institute of Science and Technology Austria
IST-REx-ID

Cite this

Vanhille-Campos CE, Šarić A. Stress granules plug and stabilize damaged endolysosomal membranes. 2023. doi:10.15479/AT:ISTA:14472
Vanhille-Campos, C. E., & Šarić, A. (2023). Stress granules plug and stabilize damaged endolysosomal membranes. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:14472
Vanhille-Campos, Christian Eduardo, and Anđela Šarić. “Stress Granules Plug and Stabilize Damaged Endolysosomal Membranes.” Institute of Science and Technology Austria, 2023. https://doi.org/10.15479/AT:ISTA:14472.
C. E. Vanhille-Campos and A. Šarić, “Stress granules plug and stabilize damaged endolysosomal membranes.” Institute of Science and Technology Austria, 2023.
Vanhille-Campos CE, Šarić A. 2023. Stress granules plug and stabilize damaged endolysosomal membranes, Institute of Science and Technology Austria, 10.15479/AT:ISTA:14472.
Vanhille-Campos, Christian Eduardo, and Anđela Šarić. Stress Granules Plug and Stabilize Damaged Endolysosomal Membranes. Institute of Science and Technology Austria, 2023, doi:10.15479/AT:ISTA:14472.
All files available under the following license(s):
Main File(s)
Access Level
OA Open Access
Date Uploaded
2023-10-30
MD5 Checksum
a18706e952e8660c51ede52a167270b7
File Name
README.txt 1.70 KB
Access Level
OA Open Access
Date Uploaded
2023-10-31
MD5 Checksum
389eab31c6509dbc05795017fb618758


Export

Marked Publications

Open Data ISTA Research Explorer

Search this title in

Google Scholar