Quantitative Steinitz theorem: A polynomial bound

Ivanov G, Naszรณdi M. 2024. Quantitative Steinitz theorem: A polynomial bound. Bulletin of the London Mathematical Society. 56(2), 796โ€“802.

Download
OA 2024_BulletinLondonMathSoc_Ivanov.pdf 111.76 KB [Published Version]

Journal Article | Published | English

Scopus indexed
Author
Ivanov, GrigoryISTA; Naszรณdi, Mรกrton

Corresponding author has ISTA affiliation

Department
Abstract
The classical Steinitz theorem states that if the origin belongs to the interior of the convex hull of a set ๐‘†โŠ‚โ„๐‘‘, then there are at most 2๐‘‘ points of ๐‘† whose convex hull contains the origin in the interior. Bรกrรกny, Katchalski,and Pach proved the following quantitative version of Steinitzโ€™s theorem. Let ๐‘„ be a convex polytope in โ„๐‘‘ containing the standard Euclidean unit ball ๐๐‘‘. Then there exist at most 2๐‘‘ vertices of ๐‘„ whose convex hull ๐‘„โ€ฒ satisfies ๐‘Ÿ๐๐‘‘โŠ‚๐‘„โ€ฒ with ๐‘Ÿโฉพ๐‘‘โˆ’2๐‘‘. They conjectured that ๐‘Ÿโฉพ๐‘๐‘‘โˆ’1โˆ•2 holds with a universal constant ๐‘>0. We prove ๐‘Ÿโฉพ15๐‘‘2, the first polynomial lower bound on ๐‘Ÿ. Furthermore, we show that ๐‘Ÿ is not greater than 2/โˆš๐‘‘.
Publishing Year
Date Published
2024-02-01
Journal Title
Bulletin of the London Mathematical Society
Publisher
London Mathematical Society
Acknowledgement
M.N. was supported by the Jรกnos Bolyai Scholarship of the Hungarian Academy of Sciences aswell as the National Research, Development and Innovation Fund (NRDI) grants K119670 andK131529, and the รšNKP-22-5 New National Excellence Program of the Ministry for Innovationand Technology from the source of the NRDI as well as the ELTE TKP 2021-NKTA-62 fundingscheme
Volume
56
Issue
2
Page
796-802
ISSN
eISSN
IST-REx-ID

Cite this

Ivanov G, Naszรณdi M. Quantitative Steinitz theorem: A polynomial bound. Bulletin of the London Mathematical Society. 2024;56(2):796-802. doi:10.1112/blms.12965
Ivanov, G., & Naszรณdi, M. (2024). Quantitative Steinitz theorem: A polynomial bound. Bulletin of the London Mathematical Society. London Mathematical Society. https://doi.org/10.1112/blms.12965
Ivanov, Grigory, and Mรกrton Naszรณdi. โ€œQuantitative Steinitz Theorem: A Polynomial Bound.โ€ Bulletin of the London Mathematical Society. London Mathematical Society, 2024. https://doi.org/10.1112/blms.12965.
G. Ivanov and M. Naszรณdi, โ€œQuantitative Steinitz theorem: A polynomial bound,โ€ Bulletin of the London Mathematical Society, vol. 56, no. 2. London Mathematical Society, pp. 796โ€“802, 2024.
Ivanov G, Naszรณdi M. 2024. Quantitative Steinitz theorem: A polynomial bound. Bulletin of the London Mathematical Society. 56(2), 796โ€“802.
Ivanov, Grigory, and Mรกrton Naszรณdi. โ€œQuantitative Steinitz Theorem: A Polynomial Bound.โ€ Bulletin of the London Mathematical Society, vol. 56, no. 2, London Mathematical Society, 2024, pp. 796โ€“802, doi:10.1112/blms.12965.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
Access Level
OA Open Access
Date Uploaded
2024-07-16
MD5 Checksum
30ea0694757bc668cf7cd15ae357b35e


Export

Marked Publications

Open Data ISTA Research Explorer

Sources

arXiv 2212.04308

Search this title in

Google Scholar