Machine learning and phylogenetic analysis allow for predicting antibiotic resistance in M. tuberculosis

Yurtseven A, Buyanova S, Agrawal AAA, Bochkareva O, Kalinina OVV. 2023. Machine learning and phylogenetic analysis allow for predicting antibiotic resistance in M. tuberculosis. BMC Microbiology. 23(1), 404.

Download
OA 2023_BMCMicrobiology_Yurtseven.pdf 1.98 MB [Published Version]

Journal Article | Published | English

Scopus indexed
Author
Yurtseven, Alper; Buyanova, SofiaISTA; Agrawal, Amay Ajaykumar A.; Bochkareva, OlgaISTA ; Kalinina, Olga V V.
Department
Abstract
Background: Antimicrobial resistance (AMR) poses a significant global health threat, and an accurate prediction of bacterial resistance patterns is critical for effective treatment and control strategies. In recent years, machine learning (ML) approaches have emerged as powerful tools for analyzing large-scale bacterial AMR data. However, ML methods often ignore evolutionary relationships among bacterial strains, which can greatly impact performance of the ML methods, especially if resistance-associated features are attempted to be detected. Genome-wide association studies (GWAS) methods like linear mixed models accounts for the evolutionary relationships in bacteria, but they uncover only highly significant variants which have already been reported in literature. Results: In this work, we introduce a novel phylogeny-related parallelism score (PRPS), which measures whether a certain feature is correlated with the population structure of a set of samples. We demonstrate that PRPS can be used, in combination with SVM- and random forest-based models, to reduce the number of features in the analysis, while simultaneously increasing models’ performance. We applied our pipeline to publicly available AMR data from PATRIC database for Mycobacterium tuberculosis against six common antibiotics. Conclusions: Using our pipeline, we re-discovered known resistance-associated mutations as well as new candidate mutations which can be related to resistance and not previously reported in the literature. We demonstrated that taking into account phylogenetic relationships not only improves the model performance, but also yields more biologically relevant predicted most contributing resistance markers.
Publishing Year
Date Published
2023-12-01
Journal Title
BMC Microbiology
Publisher
Springer Nature
Acknowledgement
Open Access funding enabled and organized by Projekt DEAL. A.Y. and O.V.K. acknowledge financial support from the Klaus Faber Foundation. A.A.A. was funded by the Helmholtz AI project AMR-XAI. The work of O.O.B. is funded by Fonds zur Förderung der Wissenschaftlichen Forschung (FWF), Grant ESP 253-B.
Volume
23
Issue
1
Article Number
404
eISSN
IST-REx-ID

Cite this

Yurtseven A, Buyanova S, Agrawal AAA, Bochkareva O, Kalinina OVV. Machine learning and phylogenetic analysis allow for predicting antibiotic resistance in M. tuberculosis. BMC Microbiology. 2023;23(1). doi:10.1186/s12866-023-03147-7
Yurtseven, A., Buyanova, S., Agrawal, A. A. A., Bochkareva, O., & Kalinina, O. V. V. (2023). Machine learning and phylogenetic analysis allow for predicting antibiotic resistance in M. tuberculosis. BMC Microbiology. Springer Nature. https://doi.org/10.1186/s12866-023-03147-7
Yurtseven, Alper, Sofia Buyanova, Amay Ajaykumar A. Agrawal, Olga Bochkareva, and Olga V V. Kalinina. “Machine Learning and Phylogenetic Analysis Allow for Predicting Antibiotic Resistance in M. Tuberculosis.” BMC Microbiology. Springer Nature, 2023. https://doi.org/10.1186/s12866-023-03147-7.
A. Yurtseven, S. Buyanova, A. A. A. Agrawal, O. Bochkareva, and O. V. V. Kalinina, “Machine learning and phylogenetic analysis allow for predicting antibiotic resistance in M. tuberculosis,” BMC Microbiology, vol. 23, no. 1. Springer Nature, 2023.
Yurtseven A, Buyanova S, Agrawal AAA, Bochkareva O, Kalinina OVV. 2023. Machine learning and phylogenetic analysis allow for predicting antibiotic resistance in M. tuberculosis. BMC Microbiology. 23(1), 404.
Yurtseven, Alper, et al. “Machine Learning and Phylogenetic Analysis Allow for Predicting Antibiotic Resistance in M. Tuberculosis.” BMC Microbiology, vol. 23, no. 1, 404, Springer Nature, 2023, doi:10.1186/s12866-023-03147-7.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
Access Level
OA Open Access
Date Uploaded
2024-01-02
MD5 Checksum
7ff5e95f3496ff663301eb4a13a316d5


Export

Marked Publications

Open Data ISTA Research Explorer

Sources

PMID: 38124060
PubMed | Europe PMC

Search this title in

Google Scholar