TOLs function as ubiquitin receptors in the early steps of the ESCRT pathway in higher plants

Moulinier-Anzola J, Schwihla M, De-Araújo L, Artner C, Jörg L, Konstantinova N, Luschnig C, Korbei B. 2020. TOLs function as ubiquitin receptors in the early steps of the ESCRT pathway in higher plants. Molecular Plant. 13(5), 717–731.

Download
OA 2020_MolecularPlant_MoulinierAnzola.pdf 3.09 MB [Published Version]

Journal Article | Published | English
Author
Moulinier-Anzola, Jeanette; Schwihla, Maximilian; De-Araújo, Lucinda; Artner, ChristinaISTA; Jörg, Lisa; Konstantinova, Nataliia; Luschnig, Christian; Korbei, Barbara
Department
Abstract
Protein abundance and localization at the plasma membrane (PM) shapes plant development and mediates adaptation to changing environmental conditions. It is regulated by ubiquitination, a post-translational modification crucial for the proper sorting of endocytosed PM proteins to the vacuole for subsequent degradation. To understand the significance and the variety of roles played by this reversible modification, the function of ubiquitin receptors, which translate the ubiquitin signature into a cellular response, needs to be elucidated. In this study, we show that TOL (TOM1-like) proteins function in plants as multivalent ubiquitin receptors, governing ubiquitinated cargo delivery to the vacuole via the conserved Endosomal Sorting Complex Required for Transport (ESCRT) pathway. TOL2 and TOL6 interact with components of the ESCRT machinery and bind to K63-linked ubiquitin via two tandemly arranged conserved ubiquitin-binding domains. Mutation of these domains results not only in a loss of ubiquitin binding but also altered localization, abolishing TOL6 ubiquitin receptor activity. Function and localization of TOL6 is itself regulated by ubiquitination, whereby TOL6 ubiquitination potentially modulates degradation of PM-localized cargoes, assisting in the fine-tuning of the delicate interplay between protein recycling and downregulation. Taken together, our findings demonstrate the function and regulation of a ubiquitin receptor that mediates vacuolar degradation of PM proteins in higher plants.
Publishing Year
Date Published
2020-05-04
Journal Title
Molecular Plant
Publisher
Elsevier
Volume
13
Issue
5
Page
717-731
ISSN
IST-REx-ID

Cite this

Moulinier-Anzola J, Schwihla M, De-Araújo L, et al. TOLs function as ubiquitin receptors in the early steps of the ESCRT pathway in higher plants. Molecular Plant. 2020;13(5):717-731. doi:10.1016/j.molp.2020.02.012
Moulinier-Anzola, J., Schwihla, M., De-Araújo, L., Artner, C., Jörg, L., Konstantinova, N., … Korbei, B. (2020). TOLs function as ubiquitin receptors in the early steps of the ESCRT pathway in higher plants. Molecular Plant. Elsevier. https://doi.org/10.1016/j.molp.2020.02.012
Moulinier-Anzola, Jeanette, Maximilian Schwihla, Lucinda De-Araújo, Christina Artner, Lisa Jörg, Nataliia Konstantinova, Christian Luschnig, and Barbara Korbei. “TOLs Function as Ubiquitin Receptors in the Early Steps of the ESCRT Pathway in Higher Plants.” Molecular Plant. Elsevier, 2020. https://doi.org/10.1016/j.molp.2020.02.012.
J. Moulinier-Anzola et al., “TOLs function as ubiquitin receptors in the early steps of the ESCRT pathway in higher plants,” Molecular Plant, vol. 13, no. 5. Elsevier, pp. 717–731, 2020.
Moulinier-Anzola J, Schwihla M, De-Araújo L, Artner C, Jörg L, Konstantinova N, Luschnig C, Korbei B. 2020. TOLs function as ubiquitin receptors in the early steps of the ESCRT pathway in higher plants. Molecular Plant. 13(5), 717–731.
Moulinier-Anzola, Jeanette, et al. “TOLs Function as Ubiquitin Receptors in the Early Steps of the ESCRT Pathway in Higher Plants.” Molecular Plant, vol. 13, no. 5, Elsevier, 2020, pp. 717–31, doi:10.1016/j.molp.2020.02.012.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
Access Level
OA Open Access
Date Uploaded
2024-02-28
MD5 Checksum
c538a5008f7827f62d17d40a3bfabe65


Export

Marked Publications

Open Data ISTA Research Explorer

Sources

PMID: 32087370
PubMed | Europe PMC

Search this title in

Google Scholar