Dynamics at the serine loop underlie differential affinity of cryptochromes for CLOCK:BMAL1 to control circadian timing

Fribourgh JL, Srivastava A, Sandate CR, Michael AK, Hsu PL, Rakers C, Nguyen LT, Torgrimson MR, Parico GCG, Tripathi S, Zheng N, Lander GC, Hirota T, Tama F, Partch CL. 2020. Dynamics at the serine loop underlie differential affinity of cryptochromes for CLOCK:BMAL1 to control circadian timing. eLife. 9, 55275.

Download (ext.)

Journal Article | Published | English

Scopus indexed
Author
Fribourgh, Jennifer L; Srivastava, Ashutosh; Sandate, Colby R; Michael, Alicia K.ISTA; Hsu, Peter L; Rakers, Christin; Nguyen, Leslee T; Torgrimson, Megan R; Parico, Gian Carlo G; Tripathi, Sarvind; Zheng, Ning; Lander, Gabriel C
All
Abstract
Mammalian circadian rhythms are generated by a transcription-based feedback loop in which CLOCK:BMAL1 drives transcription of its repressors (PER1/2, CRY1/2), which ultimately interact with CLOCK:BMAL1 to close the feedback loop with ~24 hr periodicity. Here we pinpoint a key difference between CRY1 and CRY2 that underlies their differential strengths as transcriptional repressors. Both cryptochromes bind the BMAL1 transactivation domain similarly to sequester it from coactivators and repress CLOCK:BMAL1 activity. However, we find that CRY1 is recruited with much higher affinity to the PAS domain core of CLOCK:BMAL1, allowing it to serve as a stronger repressor that lengthens circadian period. We discovered a dynamic serine-rich loop adjacent to the secondary pocket in the photolyase homology region (PHR) domain that regulates differential binding of cryptochromes to the PAS domain core of CLOCK:BMAL1. Notably, binding of the co-repressor PER2 remodels the serine loop of CRY2, making it more CRY1-like and enhancing its affinity for CLOCK:BMAL1.
Publishing Year
Date Published
2020-02-26
Journal Title
eLife
Publisher
eLife Sciences Publications
Volume
9
Article Number
55275
ISSN
IST-REx-ID

Cite this

Fribourgh JL, Srivastava A, Sandate CR, et al. Dynamics at the serine loop underlie differential affinity of cryptochromes for CLOCK:BMAL1 to control circadian timing. eLife. 2020;9. doi:10.7554/elife.55275
Fribourgh, J. L., Srivastava, A., Sandate, C. R., Michael, A. K., Hsu, P. L., Rakers, C., … Partch, C. L. (2020). Dynamics at the serine loop underlie differential affinity of cryptochromes for CLOCK:BMAL1 to control circadian timing. ELife. eLife Sciences Publications. https://doi.org/10.7554/elife.55275
Fribourgh, Jennifer L, Ashutosh Srivastava, Colby R Sandate, Alicia K. Michael, Peter L Hsu, Christin Rakers, Leslee T Nguyen, et al. “Dynamics at the Serine Loop Underlie Differential Affinity of Cryptochromes for CLOCK:BMAL1 to Control Circadian Timing.” ELife. eLife Sciences Publications, 2020. https://doi.org/10.7554/elife.55275.
J. L. Fribourgh et al., “Dynamics at the serine loop underlie differential affinity of cryptochromes for CLOCK:BMAL1 to control circadian timing,” eLife, vol. 9. eLife Sciences Publications, 2020.
Fribourgh JL, Srivastava A, Sandate CR, Michael AK, Hsu PL, Rakers C, Nguyen LT, Torgrimson MR, Parico GCG, Tripathi S, Zheng N, Lander GC, Hirota T, Tama F, Partch CL. 2020. Dynamics at the serine loop underlie differential affinity of cryptochromes for CLOCK:BMAL1 to control circadian timing. eLife. 9, 55275.
Fribourgh, Jennifer L., et al. “Dynamics at the Serine Loop Underlie Differential Affinity of Cryptochromes for CLOCK:BMAL1 to Control Circadian Timing.” ELife, vol. 9, 55275, eLife Sciences Publications, 2020, doi:10.7554/elife.55275.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]

Link(s) to Main File(s)
Access Level
OA Open Access

Export

0 Marked Publications

Open Data ISTA Research Explorer

Search this title in

Google Scholar