kCSD-python, reliable current source density estimation with quality control
Chintaluri C, Bejtka M, Sredniawa W, Czerwinski M, Dzik JM, Jedrzejewska-Szmek J, Wojciki DK. 2024. kCSD-python, reliable current source density estimation with quality control. PLoS Computational Biology. 20(3), e1011941.
Download
No fulltext has been uploaded. References only!
Journal Article
| Published
| English
Scopus indexed
Author
Chintaluri, ChaitanyaISTA;
Bejtka, Marta;
Sredniawa, Wladyslaw;
Czerwinski, Michal;
Dzik, Jakub M.;
Jedrzejewska-Szmek, Joanna;
Wojciki, Daniel K.
Corresponding author has ISTA affiliation
Department
Abstract
Interpretation of extracellular recordings can be challenging due to the long range of electric field. This challenge can be mitigated by estimating the current source density (CSD). Here we introduce kCSD-python, an open Python package implementing Kernel Current Source Density (kCSD) method and related tools to facilitate CSD analysis of experimental data and the interpretation of results. We show how to counter the limitations imposed by noise and assumptions in the method itself. kCSD-python allows CSD estimation for an arbitrary distribution of electrodes in 1D, 2D, and 3D, assuming distributions of sources in tissue, a slice, or in a single cell, and includes a range of diagnostic aids. We demonstrate its features in a Jupyter Notebook tutorial which illustrates a typical analytical workflow and main functionalities useful in validating analysis results.
Publishing Year
Date Published
2024-03-14
Journal Title
PLoS Computational Biology
Publisher
Public Library of Science
Acknowledgement
The Python implementation of kCSD was started by Grzegorz Parka during Google Summer of Code project through the International Neuroinformatics Coordinating Facility. Jan Mąka implemented the first Python version of skCSD class. This work was supported by the Polish National Science Centre (2013/08/W/NZ4/00691 to DKW; 2015/17/B/ST7/04123 to DKW).
Volume
20
Issue
3
Article Number
e1011941
ISSN
eISSN
IST-REx-ID
Cite this
Chintaluri C, Bejtka M, Sredniawa W, et al. kCSD-python, reliable current source density estimation with quality control. PLoS Computational Biology. 2024;20(3). doi:10.1371/journal.pcbi.1011941
Chintaluri, C., Bejtka, M., Sredniawa, W., Czerwinski, M., Dzik, J. M., Jedrzejewska-Szmek, J., & Wojciki, D. K. (2024). kCSD-python, reliable current source density estimation with quality control. PLoS Computational Biology. Public Library of Science. https://doi.org/10.1371/journal.pcbi.1011941
Chintaluri, Chaitanya, Marta Bejtka, Wladyslaw Sredniawa, Michal Czerwinski, Jakub M. Dzik, Joanna Jedrzejewska-Szmek, and Daniel K. Wojciki. “KCSD-Python, Reliable Current Source Density Estimation with Quality Control.” PLoS Computational Biology. Public Library of Science, 2024. https://doi.org/10.1371/journal.pcbi.1011941.
C. Chintaluri et al., “kCSD-python, reliable current source density estimation with quality control,” PLoS Computational Biology, vol. 20, no. 3. Public Library of Science, 2024.
Chintaluri C, Bejtka M, Sredniawa W, Czerwinski M, Dzik JM, Jedrzejewska-Szmek J, Wojciki DK. 2024. kCSD-python, reliable current source density estimation with quality control. PLoS Computational Biology. 20(3), e1011941.
Chintaluri, Chaitanya, et al. “KCSD-Python, Reliable Current Source Density Estimation with Quality Control.” PLoS Computational Biology, vol. 20, no. 3, e1011941, Public Library of Science, 2024, doi:10.1371/journal.pcbi.1011941.