Functional and bioinformatics analysis of two Campylobacter jejuni homologs of the thiol-disulfide oxidoreductase, DsbA

Grabowska A, Wywiał E, Dunin Horkawicz S, Łasica A, Wösten M, Nagy-Staron AA, Godlewska R, Bocian Ostrzycka K, Pieńkowska K, Łaniewski P, Bujnicki J, Van Putten J, Jagusztyn Krynicka E. 2014. Functional and bioinformatics analysis of two Campylobacter jejuni homologs of the thiol-disulfide oxidoreductase, DsbA. PLoS One. 9(9), e106247.

Download
OA IST-2016-438-v1+1_journal.pone.0106247.pdf 4.25 MB [Published Version]

Journal Article | Published | English

Scopus indexed
Author
Grabowska, Anna; Wywiał, Ewa; Dunin Horkawicz, Stanislaw; Łasica, Anna; Wösten, Marc; Nagy-Staron, Anna AISTA; Godlewska, Renata; Bocian Ostrzycka, Katarzyna; Pieńkowska, Katarzyna; Łaniewski, Paweł; Bujnicki, Janusz; Van Putten, Jos
All
Department
Abstract
Background: Bacterial Dsb enzymes are involved in the oxidative folding of many proteins, through the formation of disulfide bonds between their cysteine residues. The Dsb protein network has been well characterized in cells of the model microorganism Escherichia coli. To gain insight into the functioning of the Dsb system in epsilon-Proteobacteria, where it plays an important role in the colonization process, we studied two homologs of the main Escherichia coli Dsb oxidase (EcDsbA) that are present in the cells of the enteric pathogen Campylobacter jejuni, the most frequently reported bacterial cause of human enteritis in the world. Methods and Results: Phylogenetic analysis suggests the horizontal transfer of the epsilon-Proteobacterial DsbAs from a common ancestor to gamma-Proteobacteria, which then gave rise to the DsbL lineage. Phenotype and enzymatic assays suggest that the two C. jejuni DsbAs play different roles in bacterial cells and have divergent substrate spectra. CjDsbA1 is essential for the motility and autoagglutination phenotypes, while CjDsbA2 has no impact on those processes. CjDsbA1 plays a critical role in the oxidative folding that ensures the activity of alkaline phosphatase CjPhoX, whereas CjDsbA2 is crucial for the activity of arylsulfotransferase CjAstA, encoded within the dsbA2-dsbB-astA operon. Conclusions: Our results show that CjDsbA1 is the primary thiol-oxidoreductase affecting life processes associated with bacterial spread and host colonization, as well as ensuring the oxidative folding of particular protein substrates. In contrast, CjDsbA2 activity does not affect the same processes and so far its oxidative folding activity has been demonstrated for one substrate, arylsulfotransferase CjAstA. The results suggest the cooperation between CjDsbA2 and CjDsbB. In the case of the CjDsbA1, this cooperation is not exclusive and there is probably another protein to be identified in C. jejuni cells that acts to re-oxidize CjDsbA1. Altogether the data presented here constitute the considerable insight to the Epsilonproteobacterial Dsb systems, which have been poorly understood so far.
Publishing Year
Date Published
2014-09-02
Journal Title
PLoS One
Publisher
Public Library of Science
Volume
9
Issue
9
Article Number
e106247
IST-REx-ID

Cite this

Grabowska A, Wywiał E, Dunin Horkawicz S, et al. Functional and bioinformatics analysis of two Campylobacter jejuni homologs of the thiol-disulfide oxidoreductase, DsbA. PLoS One. 2014;9(9). doi:10.1371/journal.pone.0106247
Grabowska, A., Wywiał, E., Dunin Horkawicz, S., Łasica, A., Wösten, M., Nagy-Staron, A. A., … Jagusztyn Krynicka, E. (2014). Functional and bioinformatics analysis of two Campylobacter jejuni homologs of the thiol-disulfide oxidoreductase, DsbA. PLoS One. Public Library of Science. https://doi.org/10.1371/journal.pone.0106247
Grabowska, Anna, Ewa Wywiał, Stanislaw Dunin Horkawicz, Anna Łasica, Marc Wösten, Anna A Nagy-Staron, Renata Godlewska, et al. “Functional and Bioinformatics Analysis of Two Campylobacter Jejuni Homologs of the Thiol-Disulfide Oxidoreductase, DsbA.” PLoS One. Public Library of Science, 2014. https://doi.org/10.1371/journal.pone.0106247.
A. Grabowska et al., “Functional and bioinformatics analysis of two Campylobacter jejuni homologs of the thiol-disulfide oxidoreductase, DsbA,” PLoS One, vol. 9, no. 9. Public Library of Science, 2014.
Grabowska A, Wywiał E, Dunin Horkawicz S, Łasica A, Wösten M, Nagy-Staron AA, Godlewska R, Bocian Ostrzycka K, Pieńkowska K, Łaniewski P, Bujnicki J, Van Putten J, Jagusztyn Krynicka E. 2014. Functional and bioinformatics analysis of two Campylobacter jejuni homologs of the thiol-disulfide oxidoreductase, DsbA. PLoS One. 9(9), e106247.
Grabowska, Anna, et al. “Functional and Bioinformatics Analysis of Two Campylobacter Jejuni Homologs of the Thiol-Disulfide Oxidoreductase, DsbA.” PLoS One, vol. 9, no. 9, e106247, Public Library of Science, 2014, doi:10.1371/journal.pone.0106247.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
Access Level
OA Open Access
Date Uploaded
2018-12-12
MD5 Checksum
7d02c3da7f72b82bb5d7932d80c3251f


Export

Marked Publications

Open Data ISTA Research Explorer

Search this title in

Google Scholar