PID/WAG-mediated phosphorylation of the Arabidopsis PIN3 auxin transporter mediates polarity switches during gravitropism

Grones P, Abas MF, Hajny J, Jones A, Waidmann S, Kleine Vehn J, Friml J. 2018. PID/WAG-mediated phosphorylation of the Arabidopsis PIN3 auxin transporter mediates polarity switches during gravitropism. Scientific Reports. 8(1), 10279.

Download
OA 2018_ScientificReports_Grones.pdf 2.41 MB [Published Version]

Journal Article | Published | English

Scopus indexed
Author
Grones, PeterISTA; Abas, Melinda FISTA; Hajny, JakubISTA ; Jones, Angharad; Waidmann, Sascha; Kleine Vehn, Jürgen; Friml, JiríISTA
Abstract
Intercellular distribution of the plant hormone auxin largely depends on the polar subcellular distribution of the plasma membrane PIN-FORMED (PIN) auxin transporters. PIN polarity switches in response to different developmental and environmental signals have been shown to redirect auxin fluxes mediating certain developmental responses. PIN phosphorylation at different sites and by different kinases is crucial for PIN function. Here we investigate the role of PIN phosphorylation during gravitropic response. Loss- and gain-of-function mutants in PINOID and related kinases but not in D6PK kinase as well as mutations mimicking constitutive dephosphorylated or phosphorylated status of two clusters of predicted phosphorylation sites partially disrupted PIN3 phosphorylation and caused defects in gravitropic bending in roots and hypocotyls. In particular, they impacted PIN3 polarity rearrangements in response to gravity and during feed-back regulation by auxin itself. Thus PIN phosphorylation, besides regulating transport activity and apical-basal targeting, is also important for the rapid polarity switches in response to environmental and endogenous signals.
Publishing Year
Date Published
2018-07-06
Journal Title
Scientific Reports
Volume
8
Issue
1
Article Number
10279
IST-REx-ID
191

Cite this

Grones P, Abas MF, Hajny J, et al. PID/WAG-mediated phosphorylation of the Arabidopsis PIN3 auxin transporter mediates polarity switches during gravitropism. Scientific Reports. 2018;8(1). doi:10.1038/s41598-018-28188-1
Grones, P., Abas, M. F., Hajny, J., Jones, A., Waidmann, S., Kleine Vehn, J., & Friml, J. (2018). PID/WAG-mediated phosphorylation of the Arabidopsis PIN3 auxin transporter mediates polarity switches during gravitropism. Scientific Reports. Springer. https://doi.org/10.1038/s41598-018-28188-1
Grones, Peter, Melinda F Abas, Jakub Hajny, Angharad Jones, Sascha Waidmann, Jürgen Kleine Vehn, and Jiří Friml. “PID/WAG-Mediated Phosphorylation of the Arabidopsis PIN3 Auxin Transporter Mediates Polarity Switches during Gravitropism.” Scientific Reports. Springer, 2018. https://doi.org/10.1038/s41598-018-28188-1.
P. Grones et al., “PID/WAG-mediated phosphorylation of the Arabidopsis PIN3 auxin transporter mediates polarity switches during gravitropism,” Scientific Reports, vol. 8, no. 1. Springer, 2018.
Grones P, Abas MF, Hajny J, Jones A, Waidmann S, Kleine Vehn J, Friml J. 2018. PID/WAG-mediated phosphorylation of the Arabidopsis PIN3 auxin transporter mediates polarity switches during gravitropism. Scientific Reports. 8(1), 10279.
Grones, Peter, et al. “PID/WAG-Mediated Phosphorylation of the Arabidopsis PIN3 Auxin Transporter Mediates Polarity Switches during Gravitropism.” Scientific Reports, vol. 8, no. 1, 10279, Springer, 2018, doi:10.1038/s41598-018-28188-1.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
Access Level
OA Open Access
Date Uploaded
2018-12-17
MD5 Checksum
266b03f4fb8198e83141617aaa99dcab


Export

Marked Publications

Open Data ISTA Research Explorer

Web of Science

View record in Web of Science®

Search this title in

Google Scholar