Scales
Helfter M. 2025. Scales. Mathematische Zeitschrift. 310, 15.
Download (ext.)
Journal Article
| Published
| English
Scopus indexed
Author
Corresponding author has ISTA affiliation
Department
Abstract
We introduce the notions of scale for sets and measures on metric space by generalizing the usual notions of dimension. Several versions of scales are introduced such as Hausdorff, packing, box, local and quantization. They are defined for different growth, allowing a refined study of infinite dimensional spaces. We prove general theorems comparing the different versions of scales. They are applied to describe geometries of ergodic decompositions, of the Wiener measure and from functional spaces. The first application solves a problem of Berger on the notions of emergence (2020); the second lies in the geometry of the Wiener measure and extends the work of Dereich–Lifshits (2005); the last refines Kolmogorov–Tikhomirov (1958) study on finitely differentiable functions.
Publishing Year
Date Published
2025-05-01
Journal Title
Mathematische Zeitschrift
Publisher
Springer Nature
Volume
310
Article Number
15
ISSN
eISSN
IST-REx-ID
Cite this
Helfter M. Scales. Mathematische Zeitschrift. 2025;310. doi:10.1007/s00209-025-03719-5
Helfter, M. (2025). Scales. Mathematische Zeitschrift. Springer Nature. https://doi.org/10.1007/s00209-025-03719-5
Helfter, Mathieu. “Scales.” Mathematische Zeitschrift. Springer Nature, 2025. https://doi.org/10.1007/s00209-025-03719-5.
M. Helfter, “Scales,” Mathematische Zeitschrift, vol. 310. Springer Nature, 2025.
Helfter M. 2025. Scales. Mathematische Zeitschrift. 310, 15.
Helfter, Mathieu. “Scales.” Mathematische Zeitschrift, vol. 310, 15, Springer Nature, 2025, doi:10.1007/s00209-025-03719-5.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Link(s) to Main File(s)
Access Level

Export
Marked PublicationsOpen Data ISTA Research Explorer
Sources
arXiv 2206.05231