Eigenvector decorrelation for random matrices

Cipolloni G, Erdös L, Henheik SJ, Kolupaiev O. Eigenvector decorrelation for random matrices. arXiv, 10.48550/arXiv.2410.10718.

Download (ext.)

Preprint | Draft | English

Corresponding author has ISTA affiliation

Department
Abstract
We study the sensitivity of the eigenvectors of random matrices, showing that even small perturbations make the eigenvectors almost orthogonal. More precisely, we consider two deformed Wigner matrices $W+D_1$, $W+D_2$ and show that their bulk eigenvectors become asymptotically orthogonal as soon as $\mathrm{Tr}(D_1-D_2)^2\gg 1$, or their respective energies are separated on a scale much bigger than the local eigenvalue spacing. Furthermore, we show that quadratic forms of eigenvectors of $W+D_1$, $W+D_2$ with any deterministic matrix $A\in\mathbf{C}^{N\times N}$ in a specific subspace of codimension one are of size $N^{-1/2}$. This proves a generalization of the Eigenstate Thermalization Hypothesis to eigenvectors belonging to two different spectral families.
Publishing Year
Date Published
2025-01-30
Journal Title
arXiv
Acknowledgement
Supported by the ERC Advanced Grant “RMTBeyond” No. 101020331.
IST-REx-ID

Cite this

Cipolloni G, Erdös L, Henheik SJ, Kolupaiev O. Eigenvector decorrelation for random matrices. arXiv. doi:10.48550/arXiv.2410.10718
Cipolloni, G., Erdös, L., Henheik, S. J., & Kolupaiev, O. (n.d.). Eigenvector decorrelation for random matrices. arXiv. https://doi.org/10.48550/arXiv.2410.10718
Cipolloni, Giorgio, László Erdös, Sven Joscha Henheik, and Oleksii Kolupaiev. “Eigenvector Decorrelation for Random Matrices.” ArXiv, n.d. https://doi.org/10.48550/arXiv.2410.10718.
G. Cipolloni, L. Erdös, S. J. Henheik, and O. Kolupaiev, “Eigenvector decorrelation for random matrices,” arXiv. .
Cipolloni G, Erdös L, Henheik SJ, Kolupaiev O. Eigenvector decorrelation for random matrices. arXiv, 10.48550/arXiv.2410.10718.
Cipolloni, Giorgio, et al. “Eigenvector Decorrelation for Random Matrices.” ArXiv, doi:10.48550/arXiv.2410.10718.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):

Link(s) to Main File(s)
Access Level
OA Open Access

Export

Marked Publications

Open Data ISTA Research Explorer

Sources

arXiv 2410.10718

Search this title in

Google Scholar