Eigenvector decorrelation for random matrices
Cipolloni G, Erdös L, Henheik SJ, Kolupaiev O. Eigenvector decorrelation for random matrices. arXiv, 10.48550/arXiv.2410.10718.
Download (ext.)
Preprint
| Draft
| English
Author
Corresponding author has ISTA affiliation
Department
Abstract
We study the sensitivity of the eigenvectors of random matrices, showing that
even small perturbations make the eigenvectors almost orthogonal. More
precisely, we consider two deformed Wigner matrices $W+D_1$, $W+D_2$ and show
that their bulk eigenvectors become asymptotically orthogonal as soon as
$\mathrm{Tr}(D_1-D_2)^2\gg 1$, or their respective energies are separated on a
scale much bigger than the local eigenvalue spacing. Furthermore, we show that
quadratic forms of eigenvectors of $W+D_1$, $W+D_2$ with any deterministic
matrix $A\in\mathbf{C}^{N\times N}$ in a specific subspace of codimension one
are of size $N^{-1/2}$. This proves a generalization of the Eigenstate
Thermalization Hypothesis to eigenvectors belonging to two different spectral
families.
Publishing Year
Date Published
2025-01-30
Journal Title
arXiv
Acknowledgement
Supported by the ERC Advanced Grant “RMTBeyond” No. 101020331.
IST-REx-ID
Cite this
Cipolloni G, Erdös L, Henheik SJ, Kolupaiev O. Eigenvector decorrelation for random matrices. arXiv. doi:10.48550/arXiv.2410.10718
Cipolloni, G., Erdös, L., Henheik, S. J., & Kolupaiev, O. (n.d.). Eigenvector decorrelation for random matrices. arXiv. https://doi.org/10.48550/arXiv.2410.10718
Cipolloni, Giorgio, László Erdös, Sven Joscha Henheik, and Oleksii Kolupaiev. “Eigenvector Decorrelation for Random Matrices.” ArXiv, n.d. https://doi.org/10.48550/arXiv.2410.10718.
G. Cipolloni, L. Erdös, S. J. Henheik, and O. Kolupaiev, “Eigenvector decorrelation for random matrices,” arXiv. .
Cipolloni G, Erdös L, Henheik SJ, Kolupaiev O. Eigenvector decorrelation for random matrices. arXiv, 10.48550/arXiv.2410.10718.
Cipolloni, Giorgio, et al. “Eigenvector Decorrelation for Random Matrices.” ArXiv, doi:10.48550/arXiv.2410.10718.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Link(s) to Main File(s)
Access Level

Material in ISTA:
Dissertation containing ISTA record
Export
Marked PublicationsOpen Data ISTA Research Explorer
Sources
arXiv 2410.10718