Capture of activity-induced ultrastructural changes at synapses by high-pressure freezing of brain tissue
Studer D, Zhao S, Chai X, Jonas PM, Graber W, Nestel S, Frotscher M. 2014. Capture of activity-induced ultrastructural changes at synapses by high-pressure freezing of brain tissue. Nature Protocols. 9(6), 1480–1495.
Download
No fulltext has been uploaded. References only!
Journal Article
| Published
| English
Scopus indexed
Author
Studer, Daniel;
Zhao, Shanting;
Chai, Xuejun;
Jonas, Peter MISTA ;
Graber, Werner;
Nestel, Sigrun;
Frotscher, Michael
Department
Abstract
Electron microscopy (EM) allows for the simultaneous visualization of all tissue components at high resolution. However, the extent to which conventional aldehyde fixation and ethanol dehydration of the tissue alter the fine structure of cells and organelles, thereby preventing detection of subtle structural changes induced by an experiment, has remained an issue. Attempts have been made to rapidly freeze tissue to preserve native ultrastructure. Shock-freezing of living tissue under high pressure (high-pressure freezing, HPF) followed by cryosubstitution of the tissue water avoids aldehyde fixation and dehydration in ethanol; the tissue water is immobilized in â ̂1/450 ms, and a close-to-native fine structure of cells, organelles and molecules is preserved. Here we describe a protocol for HPF that is useful to monitor ultrastructural changes associated with functional changes at synapses in the brain but can be applied to many other tissues as well. The procedure requires a high-pressure freezer and takes a minimum of 7 d but can be paused at several points.
Publishing Year
Date Published
2014-05-29
Journal Title
Nature Protocols
Volume
9
Issue
6
Page
1480 - 1495
IST-REx-ID
Cite this
Studer D, Zhao S, Chai X, et al. Capture of activity-induced ultrastructural changes at synapses by high-pressure freezing of brain tissue. Nature Protocols. 2014;9(6):1480-1495. doi:10.1038/nprot.2014.099
Studer, D., Zhao, S., Chai, X., Jonas, P. M., Graber, W., Nestel, S., & Frotscher, M. (2014). Capture of activity-induced ultrastructural changes at synapses by high-pressure freezing of brain tissue. Nature Protocols. Nature Publishing Group. https://doi.org/10.1038/nprot.2014.099
Studer, Daniel, Shanting Zhao, Xuejun Chai, Peter M Jonas, Werner Graber, Sigrun Nestel, and Michael Frotscher. “Capture of Activity-Induced Ultrastructural Changes at Synapses by High-Pressure Freezing of Brain Tissue.” Nature Protocols. Nature Publishing Group, 2014. https://doi.org/10.1038/nprot.2014.099.
D. Studer et al., “Capture of activity-induced ultrastructural changes at synapses by high-pressure freezing of brain tissue,” Nature Protocols, vol. 9, no. 6. Nature Publishing Group, pp. 1480–1495, 2014.
Studer D, Zhao S, Chai X, Jonas PM, Graber W, Nestel S, Frotscher M. 2014. Capture of activity-induced ultrastructural changes at synapses by high-pressure freezing of brain tissue. Nature Protocols. 9(6), 1480–1495.
Studer, Daniel, et al. “Capture of Activity-Induced Ultrastructural Changes at Synapses by High-Pressure Freezing of Brain Tissue.” Nature Protocols, vol. 9, no. 6, Nature Publishing Group, 2014, pp. 1480–95, doi:10.1038/nprot.2014.099.