How the “slow” Ca(2+) buffer parvalbumin affects transmitter release in nanodomain coupling regimes at GABAergic synapses
Eggermann E, Jonas PM. 2011. How the “slow” Ca(2+) buffer parvalbumin affects transmitter release in nanodomain coupling regimes at GABAergic synapses. Nature Neuroscience. 15, 20–22.
Download (ext.)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3631701/
[Submitted Version]
DOI
Journal Article
| Published
| English
Scopus indexed
Author
Eggermann, Emmanuel;
Jonas, Peter MISTA
Corresponding author has ISTA affiliation
Department
Abstract
Parvalbumin is thought to act in a manner similar to EGTA, but how a slow Ca2+ buffer affects nanodomain-coupling regimes at GABAergic synapses is unclear. Direct measurements of parvalbumin concentration and paired recordings in rodent hippocampus and cerebellum revealed that parvalbumin affects synaptic dynamics only when expressed at high levels. Modeling suggests that, in high concentrations, parvalbumin may exert BAPTA-like effects, modulating nanodomain coupling via competition with local saturation of endogenous fixed buffers.
Publishing Year
Date Published
2011-12-04
Journal Title
Nature Neuroscience
Publisher
Nature Publishing Group
Volume
15
Page
20 - 22
IST-REx-ID
Cite this
Eggermann E, Jonas PM. How the “slow” Ca(2+) buffer parvalbumin affects transmitter release in nanodomain coupling regimes at GABAergic synapses. Nature Neuroscience. 2011;15:20-22. doi:10.1038/nn.3002
Eggermann, E., & Jonas, P. M. (2011). How the “slow” Ca(2+) buffer parvalbumin affects transmitter release in nanodomain coupling regimes at GABAergic synapses. Nature Neuroscience. Nature Publishing Group. https://doi.org/10.1038/nn.3002
Eggermann, Emmanuel, and Peter M Jonas. “How the ‘Slow’ Ca(2+) Buffer Parvalbumin Affects Transmitter Release in Nanodomain Coupling Regimes at GABAergic Synapses.” Nature Neuroscience. Nature Publishing Group, 2011. https://doi.org/10.1038/nn.3002.
E. Eggermann and P. M. Jonas, “How the ‘slow’ Ca(2+) buffer parvalbumin affects transmitter release in nanodomain coupling regimes at GABAergic synapses,” Nature Neuroscience, vol. 15. Nature Publishing Group, pp. 20–22, 2011.
Eggermann E, Jonas PM. 2011. How the “slow” Ca(2+) buffer parvalbumin affects transmitter release in nanodomain coupling regimes at GABAergic synapses. Nature Neuroscience. 15, 20–22.
Eggermann, Emmanuel, and Peter M. Jonas. “How the ‘Slow’ Ca(2+) Buffer Parvalbumin Affects Transmitter Release in Nanodomain Coupling Regimes at GABAergic Synapses.” Nature Neuroscience, vol. 15, Nature Publishing Group, 2011, pp. 20–22, doi:10.1038/nn.3002.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Link(s) to Main File(s)
Access Level
Open Access