Lack of cations in flow cytometry buffers affect fluorescence signals by reducing membrane stability and viability of Escherichia coli strains

Tomasek K, Bergmiller T, Guet CC. 2018. Lack of cations in flow cytometry buffers affect fluorescence signals by reducing membrane stability and viability of Escherichia coli strains. Journal of Biotechnology. 268, 40–52.

Download
No fulltext has been uploaded. References only!

Journal Article | Published | English

Scopus indexed

Corresponding author has ISTA affiliation

Department
Abstract
Buffers are essential for diluting bacterial cultures for flow cytometry analysis in order to study bacterial physiology and gene expression parameters based on fluorescence signals. Using a variety of constitutively expressed fluorescent proteins in Escherichia coli K-12 strain MG1655, we found strong artifactual changes in fluorescence levels after dilution into the commonly used flow cytometry buffer phosphate-buffered saline (PBS) and two other buffer solutions, Tris-HCl and M9 salts. These changes appeared very rapidly after dilution, and were linked to increased membrane permeability and loss in cell viability. We observed buffer-related effects in several different E. coli strains, K-12, C and W, but not E. coli B, which can be partially explained by differences in lipopolysaccharide (LPS) and outer membrane composition. Supplementing the buffers with divalent cations responsible for outer membrane stability, Mg2+ and Ca2+, preserved fluorescence signals, membrane integrity and viability of E. coli. Thus, stabilizing the bacterial outer membrane is essential for precise and unbiased measurements of fluorescence parameters using flow cytometry.
Publishing Year
Date Published
2018-02-20
Journal Title
Journal of Biotechnology
Publisher
Elsevier
Acknowledgement
We thank R Chait and M Lagator for sharing Bacillus subtilis CR_Y1 and pZS*_2R-cIPtet-Venus-Prm, respectively. We are grateful to T Pilizota and all members of the Guet lab for critically reading the manuscript. We also thank the Bioimaging facility at IST Austria for assistance using the FACSAria III system.
Acknowledged SSUs
Volume
268
Page
40 - 52
IST-REx-ID
503

Cite this

Tomasek K, Bergmiller T, Guet CC. Lack of cations in flow cytometry buffers affect fluorescence signals by reducing membrane stability and viability of Escherichia coli strains. Journal of Biotechnology. 2018;268:40-52. doi:10.1016/j.jbiotec.2018.01.008
Tomasek, K., Bergmiller, T., & Guet, C. C. (2018). Lack of cations in flow cytometry buffers affect fluorescence signals by reducing membrane stability and viability of Escherichia coli strains. Journal of Biotechnology. Elsevier. https://doi.org/10.1016/j.jbiotec.2018.01.008
Tomasek, Kathrin, Tobias Bergmiller, and Calin C Guet. “Lack of Cations in Flow Cytometry Buffers Affect Fluorescence Signals by Reducing Membrane Stability and Viability of Escherichia Coli Strains.” Journal of Biotechnology. Elsevier, 2018. https://doi.org/10.1016/j.jbiotec.2018.01.008.
K. Tomasek, T. Bergmiller, and C. C. Guet, “Lack of cations in flow cytometry buffers affect fluorescence signals by reducing membrane stability and viability of Escherichia coli strains,” Journal of Biotechnology, vol. 268. Elsevier, pp. 40–52, 2018.
Tomasek K, Bergmiller T, Guet CC. 2018. Lack of cations in flow cytometry buffers affect fluorescence signals by reducing membrane stability and viability of Escherichia coli strains. Journal of Biotechnology. 268, 40–52.
Tomasek, Kathrin, et al. “Lack of Cations in Flow Cytometry Buffers Affect Fluorescence Signals by Reducing Membrane Stability and Viability of Escherichia Coli Strains.” Journal of Biotechnology, vol. 268, Elsevier, 2018, pp. 40–52, doi:10.1016/j.jbiotec.2018.01.008.

Export

Marked Publications

Open Data ISTA Research Explorer

Web of Science

View record in Web of Science®

Search this title in

Google Scholar