From the left to the right: A tale of asymmetries, environments, and hippocampal development
Case MJ. 2018. From the left to the right: A tale of asymmetries, environments, and hippocampal development. Institute of Science and Technology Austria.
Download
Thesis
| PhD
| Published
| English
Author
Supervisor
Corresponding author has ISTA affiliation
Department
Series Title
ISTA Thesis
Abstract
Asymmetries have long been known about in the central nervous system. From gross anatomical differences, such as the presence of the parapineal organ in only one hemisphere of the developing zebrafish, to more subtle differences in activity between both hemispheres, as seen in freely roaming animals or human participants under PET and fMRI imaging analysis. The presence of asymmetries has been demonstrated to have huge behavioural implications, with their disruption often leading to the generation of neurological disorders, memory problems, changes in personality, and in an organism's health and well-being. For my Ph.D. work I aimed to tackle two important avenues of research. The first being the process of input-side dependency in the hippocampus, with the goal of finding a key gene responsible for its development (Gene X). The second project was to do with experience-induced laterality formation in the hippocampus. Specifically, how laterality in the synapse density of the CA1 stratum radiatum (s.r.) could be induced purely through environmental enrichment. Through unilateral tracer injections into the CA3, I was able to selectively measure the properties of synapses within the CA1 and investigate how they differed based upon which hemisphere the presynaptic neurone originated. Having found the existence of a previously unreported reversed (left-isomerism) i.v. mutant, through morpholocal examination of labelled terminals in the CA1 s.r., I aimed to elucidate a key gene responsible for the process of left or right determination of inputs to the CA1 s.r.. This work relates to the previous finding of input-side dependent asymmetry in the wild-type rodent, where the origin of the projecting neurone to the CA1 will determine the morphology of a synapse, to a greater degree than the hemisphere in which the projection terminates. Using left- and right-isomerism i.v. mice, in combination with whole genome sequence analysis, I highlight Ena/VASP-like (Evl) as a potential target for Gene X. In relation to this topic, I also highlight my work in the recently published paper of how knockout of PirB can lead to a lack of input-side dependency in the murine hippocampus. For the second question, I show that the environmental enrichment paradigm will lead to an asymmetry in the synapse densities in the hippocampus of mice. I also highlight that the nature of the enrichment is of less consequence than the process of enrichment itself. I demonstrate that the CA3 region will dramatically alter its projection targets, in relation to environmental stimulation, with the asymmetry in synaptic density, caused by enrichment, relying heavily on commissural fibres. I also highlight the vital importance of input-side dependent asymmetry, as a necessary component of experience-dependent laterality formation in the CA1 s.r.. However, my results suggest that it isn't the only cause, as there appears to be a CA1 dependent mechanism also at play. Upon further investigation, I highlight the significant, and highly important, finding that the changes seen in the CA1 s.r. were predominantly caused through projections from the left-CA3, with the right-CA3 having less involvement in this mechanism.
Publishing Year
Date Published
2018-06-27
Publisher
Institute of Science and Technology Austria
Page
186
ISSN
IST-REx-ID
Cite this
Case MJ. From the left to the right: A tale of asymmetries, environments, and hippocampal development. 2018. doi:10.15479/AT:ISTA:th_1032
Case, M. J. (2018). From the left to the right: A tale of asymmetries, environments, and hippocampal development. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th_1032
Case, Matthew J. “From the Left to the Right: A Tale of Asymmetries, Environments, and Hippocampal Development.” Institute of Science and Technology Austria, 2018. https://doi.org/10.15479/AT:ISTA:th_1032.
M. J. Case, “From the left to the right: A tale of asymmetries, environments, and hippocampal development,” Institute of Science and Technology Austria, 2018.
Case MJ. 2018. From the left to the right: A tale of asymmetries, environments, and hippocampal development. Institute of Science and Technology Austria.
Case, Matthew J. From the Left to the Right: A Tale of Asymmetries, Environments, and Hippocampal Development. Institute of Science and Technology Austria, 2018, doi:10.15479/AT:ISTA:th_1032.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Main File(s)
File Name
2018_Thesis_Case.pdf
15.19 MB
Access Level
Open Access
Date Uploaded
2019-04-09
Embargo End Date
2019-07-05
MD5 Checksum
f69fdd5c8709c4e618aa8c1a1221153d
Source File
File Name
2018_Thesis_Case_Source.doc
141.27 MB
Access Level
Closed Access
Date Uploaded
2019-04-09
MD5 Checksum
dcc7b55619d8509dd62b8e99d6cdee44