Ionic stress enhances ER–PM connectivity via phosphoinositide-associated SYT1 contact site expansion in Arabidopsis

Lee E, Vanneste S, Pérez-Sancho J, Benitez-Fuente F, Strelau M, Macho AP, Botella MA, Friml J, Rosado A. 2019. Ionic stress enhances ER–PM connectivity via phosphoinositide-associated SYT1 contact site expansion in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America. 116(4), 1420–1429.


Journal Article | Published | English

Scopus indexed
Author
Lee, Eunkyoung; Vanneste, Steffen; Pérez-Sancho, Jessica; Benitez-Fuente, Francisco; Strelau, Matthew; Macho, Alberto P.; Botella, Miguel A.; Friml, JiríISTA ; Rosado, Abel
Department
Abstract
The interorganelle communication mediated by membrane contact sites (MCSs) is an evolutionary hallmark of eukaryotic cells. MCS connections enable the nonvesicular exchange of information between organelles and allow them to coordinate responses to changing cellular environments. In plants, the importance of MCS components in the responses to environmental stress has been widely established, but the molecular mechanisms regulating interorganelle connectivity during stress still remain opaque. In this report, we use the model plant Arabidopsis thaliana to show that ionic stress increases endoplasmic reticulum (ER)–plasma membrane (PM) connectivity by promoting the cortical expansion of synaptotagmin 1 (SYT1)-enriched ER–PM contact sites (S-EPCSs). We define differential roles for the cortical cytoskeleton in the regulation of S-EPCS dynamics and ER–PM connectivity, and we identify the accumulation of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] at the PM as a molecular signal associated with the ER–PM connectivity changes. Our study highlights the functional conservation of EPCS components and PM phosphoinositides as modulators of ER–PM connectivity in eukaryotes, and uncovers unique aspects of the spatiotemporal regulation of ER–PM connectivity in plants.
Publishing Year
Date Published
2019-01-22
Journal Title
Proceedings of the National Academy of Sciences of the United States of America
Volume
116
Issue
4
Page
1420-1429
IST-REx-ID

Cite this

Lee E, Vanneste S, Pérez-Sancho J, et al. Ionic stress enhances ER–PM connectivity via phosphoinositide-associated SYT1 contact site expansion in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America. 2019;116(4):1420-1429. doi:10.1073/pnas.1818099116
Lee, E., Vanneste, S., Pérez-Sancho, J., Benitez-Fuente, F., Strelau, M., Macho, A. P., … Rosado, A. (2019). Ionic stress enhances ER–PM connectivity via phosphoinositide-associated SYT1 contact site expansion in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America. National Academy of Sciences. https://doi.org/10.1073/pnas.1818099116
Lee, Eunkyoung, Steffen Vanneste, Jessica Pérez-Sancho, Francisco Benitez-Fuente, Matthew Strelau, Alberto P. Macho, Miguel A. Botella, Jiří Friml, and Abel Rosado. “Ionic Stress Enhances ER–PM Connectivity via Phosphoinositide-Associated SYT1 Contact Site Expansion in Arabidopsis.” Proceedings of the National Academy of Sciences of the United States of America. National Academy of Sciences, 2019. https://doi.org/10.1073/pnas.1818099116.
E. Lee et al., “Ionic stress enhances ER–PM connectivity via phosphoinositide-associated SYT1 contact site expansion in Arabidopsis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 116, no. 4. National Academy of Sciences, pp. 1420–1429, 2019.
Lee E, Vanneste S, Pérez-Sancho J, Benitez-Fuente F, Strelau M, Macho AP, Botella MA, Friml J, Rosado A. 2019. Ionic stress enhances ER–PM connectivity via phosphoinositide-associated SYT1 contact site expansion in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America. 116(4), 1420–1429.
Lee, Eunkyoung, et al. “Ionic Stress Enhances ER–PM Connectivity via Phosphoinositide-Associated SYT1 Contact Site Expansion in Arabidopsis.” Proceedings of the National Academy of Sciences of the United States of America, vol. 116, no. 4, National Academy of Sciences, 2019, pp. 1420–29, doi:10.1073/pnas.1818099116.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]

Link(s) to Main File(s)
Access Level
OA Open Access

Export

Marked Publications

Open Data ISTA Research Explorer

Web of Science

View record in Web of Science®

Sources

PMID: 30610176
PubMed | Europe PMC

Search this title in

Google Scholar