Well posedness and maximum entropy approximation for the dynamics of quantitative traits
Bodova K, Haskovec J, Markowich P. 2018. Well posedness and maximum entropy approximation for the dynamics of quantitative traits. Physica D: Nonlinear Phenomena. 376–377, 108–120.
Download (ext.)
https://arxiv.org/abs/1704.08757
[Submitted Version]
Journal Article
| Published
| English
Scopus indexed
Author
Bodova, KatarinaISTA ;
Haskovec, Jan;
Markowich, Peter
Department
Abstract
We study the Fokker-Planck equation derived in the large system limit of the Markovian process describing the dynamics of quantitative traits. The Fokker-Planck equation is posed on a bounded domain and its transport and diffusion coefficients vanish on the domain's boundary. We first argue that, despite this degeneracy, the standard no-flux boundary condition is valid. We derive the weak formulation of the problem and prove the existence and uniqueness of its solutions by constructing the corresponding contraction semigroup on a suitable function space. Then, we prove that for the parameter regime with high enough mutation rate the problem exhibits a positive spectral gap, which implies exponential convergence to equilibrium.Next, we provide a simple derivation of the so-called Dynamic Maximum Entropy (DynMaxEnt) method for approximation of observables (moments) of the Fokker-Planck solution, which can be interpreted as a nonlinear Galerkin approximation. The limited applicability of the DynMaxEnt method inspires us to introduce its modified version that is valid for the whole range of admissible parameters. Finally, we present several numerical experiments to demonstrate the performance of both the original and modified DynMaxEnt methods. We observe that in the parameter regimes where both methods are valid, the modified one exhibits slightly better approximation properties compared to the original one.
Publishing Year
Date Published
2018-08-01
Journal Title
Physica D: Nonlinear Phenomena
Acknowledgement
JH and PM are funded by KAUST baseline funds and grant no. 1000000193 .
We thank Nicholas Barton (IST Austria) for his useful comments and suggestions.
Volume
376-377
Page
108-120
IST-REx-ID
Cite this
Bodova K, Haskovec J, Markowich P. Well posedness and maximum entropy approximation for the dynamics of quantitative traits. Physica D: Nonlinear Phenomena. 2018;376-377:108-120. doi:10.1016/j.physd.2017.10.015
Bodova, K., Haskovec, J., & Markowich, P. (2018). Well posedness and maximum entropy approximation for the dynamics of quantitative traits. Physica D: Nonlinear Phenomena. Elsevier. https://doi.org/10.1016/j.physd.2017.10.015
Bodova, Katarina, Jan Haskovec, and Peter Markowich. “Well Posedness and Maximum Entropy Approximation for the Dynamics of Quantitative Traits.” Physica D: Nonlinear Phenomena. Elsevier, 2018. https://doi.org/10.1016/j.physd.2017.10.015.
K. Bodova, J. Haskovec, and P. Markowich, “Well posedness and maximum entropy approximation for the dynamics of quantitative traits,” Physica D: Nonlinear Phenomena, vol. 376–377. Elsevier, pp. 108–120, 2018.
Bodova K, Haskovec J, Markowich P. 2018. Well posedness and maximum entropy approximation for the dynamics of quantitative traits. Physica D: Nonlinear Phenomena. 376–377, 108–120.
Bodova, Katarina, et al. “Well Posedness and Maximum Entropy Approximation for the Dynamics of Quantitative Traits.” Physica D: Nonlinear Phenomena, vol. 376–377, Elsevier, 2018, pp. 108–20, doi:10.1016/j.physd.2017.10.015.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Link(s) to Main File(s)
Access Level
Open Access
Export
Marked PublicationsOpen Data ISTA Research Explorer
Web of Science
View record in Web of Science®Sources
arXiv 1704.08757