Singular analytic linear cocycles with negative infinite Lyapunov exponents
Sadel C, Xu D. 2019. Singular analytic linear cocycles with negative infinite Lyapunov exponents. Ergodic Theory and Dynamical Systems. 39(4), 1082–1098.
Download (ext.)
https://arxiv.org/abs/1601.06118
[Preprint]
Journal Article
| Published
| English
Scopus indexed
Author
Sadel, ChristianISTA ;
Xu, Disheng
Department
Abstract
We show that linear analytic cocycles where all Lyapunov exponents are negative infinite are nilpotent. For such one-frequency cocycles we show that they can be analytically conjugated to an upper triangular cocycle or a Jordan normal form. As a consequence, an arbitrarily small analytic perturbation leads to distinct Lyapunov exponents. Moreover, in the one-frequency case where the th Lyapunov exponent is finite and the st negative infinite, we obtain a simple criterion for domination in which case there is a splitting into a nilpotent part and an invertible part.
Publishing Year
Date Published
2019-04-01
Journal Title
Ergodic Theory and Dynamical Systems
Publisher
Cambridge University Press
Volume
39
Issue
4
Page
1082-1098
IST-REx-ID
Cite this
Sadel C, Xu D. Singular analytic linear cocycles with negative infinite Lyapunov exponents. Ergodic Theory and Dynamical Systems. 2019;39(4):1082-1098. doi:10.1017/etds.2017.52
Sadel, C., & Xu, D. (2019). Singular analytic linear cocycles with negative infinite Lyapunov exponents. Ergodic Theory and Dynamical Systems. Cambridge University Press. https://doi.org/10.1017/etds.2017.52
Sadel, Christian, and Disheng Xu. “Singular Analytic Linear Cocycles with Negative Infinite Lyapunov Exponents.” Ergodic Theory and Dynamical Systems. Cambridge University Press, 2019. https://doi.org/10.1017/etds.2017.52.
C. Sadel and D. Xu, “Singular analytic linear cocycles with negative infinite Lyapunov exponents,” Ergodic Theory and Dynamical Systems, vol. 39, no. 4. Cambridge University Press, pp. 1082–1098, 2019.
Sadel C, Xu D. 2019. Singular analytic linear cocycles with negative infinite Lyapunov exponents. Ergodic Theory and Dynamical Systems. 39(4), 1082–1098.
Sadel, Christian, and Disheng Xu. “Singular Analytic Linear Cocycles with Negative Infinite Lyapunov Exponents.” Ergodic Theory and Dynamical Systems, vol. 39, no. 4, Cambridge University Press, 2019, pp. 1082–98, doi:10.1017/etds.2017.52.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Link(s) to Main File(s)
Access Level
Open Access
Export
Marked PublicationsOpen Data ISTA Research Explorer
Web of Science
View record in Web of Science®Sources
arXiv 1601.06118