Singular analytic linear cocycles with negative infinite Lyapunov exponents

Sadel C, Xu D. 2019. Singular analytic linear cocycles with negative infinite Lyapunov exponents. Ergodic Theory and Dynamical Systems. 39(4), 1082–1098.

Download (ext.)

Journal Article | Published | English

Scopus indexed
Author
Sadel, ChristianISTA ; Xu, Disheng
Department
Abstract
We show that linear analytic cocycles where all Lyapunov exponents are negative infinite are nilpotent. For such one-frequency cocycles we show that they can be analytically conjugated to an upper triangular cocycle or a Jordan normal form. As a consequence, an arbitrarily small analytic perturbation leads to distinct Lyapunov exponents. Moreover, in the one-frequency case where the th Lyapunov exponent is finite and the st negative infinite, we obtain a simple criterion for domination in which case there is a splitting into a nilpotent part and an invertible part.
Publishing Year
Date Published
2019-04-01
Journal Title
Ergodic Theory and Dynamical Systems
Publisher
Cambridge University Press
Volume
39
Issue
4
Page
1082-1098
IST-REx-ID

Cite this

Sadel C, Xu D. Singular analytic linear cocycles with negative infinite Lyapunov exponents. Ergodic Theory and Dynamical Systems. 2019;39(4):1082-1098. doi:10.1017/etds.2017.52
Sadel, C., & Xu, D. (2019). Singular analytic linear cocycles with negative infinite Lyapunov exponents. Ergodic Theory and Dynamical Systems. Cambridge University Press. https://doi.org/10.1017/etds.2017.52
Sadel, Christian, and Disheng Xu. “Singular Analytic Linear Cocycles with Negative Infinite Lyapunov Exponents.” Ergodic Theory and Dynamical Systems. Cambridge University Press, 2019. https://doi.org/10.1017/etds.2017.52.
C. Sadel and D. Xu, “Singular analytic linear cocycles with negative infinite Lyapunov exponents,” Ergodic Theory and Dynamical Systems, vol. 39, no. 4. Cambridge University Press, pp. 1082–1098, 2019.
Sadel C, Xu D. 2019. Singular analytic linear cocycles with negative infinite Lyapunov exponents. Ergodic Theory and Dynamical Systems. 39(4), 1082–1098.
Sadel, Christian, and Disheng Xu. “Singular Analytic Linear Cocycles with Negative Infinite Lyapunov Exponents.” Ergodic Theory and Dynamical Systems, vol. 39, no. 4, Cambridge University Press, 2019, pp. 1082–98, doi:10.1017/etds.2017.52.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]

Link(s) to Main File(s)
Access Level
OA Open Access

Export

Marked Publications

Open Data ISTA Research Explorer

Web of Science

View record in Web of Science®

Sources

arXiv 1601.06118

Search this title in

Google Scholar