Graphical model parameter learning by inverse linear programming

Trajkovska V, Swoboda P, Åström F, Petra S. 2017. Graphical model parameter learning by inverse linear programming. SSVM: Scale Space and Variational Methods in Computer Vision, LNCS, vol. 10302, 323–334.

Download
No fulltext has been uploaded. References only!

Conference Paper | Published | English

Scopus indexed
Author
Trajkovska, Vera; Swoboda, PaulISTA; Åström, Freddie; Petra, Stefanie
Editor
Lauze, François; Dong, Yiqiu; Bjorholm Dahl, Anders
Department
Series Title
LNCS
Abstract
We introduce two novel methods for learning parameters of graphical models for image labelling. The following two tasks underline both methods: (i) perturb model parameters based on given features and ground truth labelings, so as to exactly reproduce these labelings as optima of the local polytope relaxation of the labelling problem; (ii) train a predictor for the perturbed model parameters so that improved model parameters can be applied to the labelling of novel data. Our first method implements task (i) by inverse linear programming and task (ii) using a regressor e.g. a Gaussian process. Our second approach simultaneously solves tasks (i) and (ii) in a joint manner, while being restricted to linearly parameterised predictors. Experiments demonstrate the merits of both approaches.
Publishing Year
Date Published
2017-01-01
Publisher
Springer
Volume
10302
Page
323 - 334
Conference
SSVM: Scale Space and Variational Methods in Computer Vision
Conference Location
Kolding, Denmark
Conference Date
2017-06-04 – 2017-06-08
IST-REx-ID
641

Cite this

Trajkovska V, Swoboda P, Åström F, Petra S. Graphical model parameter learning by inverse linear programming. In: Lauze F, Dong Y, Bjorholm Dahl A, eds. Vol 10302. Springer; 2017:323-334. doi:10.1007/978-3-319-58771-4_26
Trajkovska, V., Swoboda, P., Åström, F., & Petra, S. (2017). Graphical model parameter learning by inverse linear programming. In F. Lauze, Y. Dong, & A. Bjorholm Dahl (Eds.) (Vol. 10302, pp. 323–334). Presented at the SSVM: Scale Space and Variational Methods in Computer Vision, Kolding, Denmark: Springer. https://doi.org/10.1007/978-3-319-58771-4_26
Trajkovska, Vera, Paul Swoboda, Freddie Åström, and Stefanie Petra. “Graphical Model Parameter Learning by Inverse Linear Programming.” edited by François Lauze, Yiqiu Dong, and Anders Bjorholm Dahl, 10302:323–34. Springer, 2017. https://doi.org/10.1007/978-3-319-58771-4_26.
V. Trajkovska, P. Swoboda, F. Åström, and S. Petra, “Graphical model parameter learning by inverse linear programming,” presented at the SSVM: Scale Space and Variational Methods in Computer Vision, Kolding, Denmark, 2017, vol. 10302, pp. 323–334.
Trajkovska V, Swoboda P, Åström F, Petra S. 2017. Graphical model parameter learning by inverse linear programming. SSVM: Scale Space and Variational Methods in Computer Vision, LNCS, vol. 10302, 323–334.
Trajkovska, Vera, et al. Graphical Model Parameter Learning by Inverse Linear Programming. Edited by François Lauze et al., vol. 10302, Springer, 2017, pp. 323–34, doi:10.1007/978-3-319-58771-4_26.

Export

Marked Publications

Open Data ISTA Research Explorer

Search this title in

Google Scholar
ISBN Search