The complexity of general-valued CSPs

Kolmogorov V, Krokhin A, Rolinek M. 2017. The complexity of general-valued CSPs. SIAM Journal on Computing. 46(3), 1087–1110.

Download (ext.)

Journal Article | Published | English

Scopus indexed
Department
Abstract
An instance of the valued constraint satisfaction problem (VCSP) is given by a finite set of variables, a finite domain of labels, and a sum of functions, each function depending on a subset of the variables. Each function can take finite values specifying costs of assignments of labels to its variables or the infinite value, which indicates an infeasible assignment. The goal is to find an assignment of labels to the variables that minimizes the sum. We study, assuming that P 6= NP, how the complexity of this very general problem depends on the set of functions allowed in the instances, the so-called constraint language. The case when all allowed functions take values in f0;1g corresponds to ordinary CSPs, where one deals only with the feasibility issue, and there is no optimization. This case is the subject of the algebraic CSP dichotomy conjecture predicting for which constraint languages CSPs are tractable (i.e., solvable in polynomial time) and for which they are NP-hard. The case when all allowed functions take only finite values corresponds to a finitevalued CSP, where the feasibility aspect is trivial and one deals only with the optimization issue. The complexity of finite-valued CSPs was fully classified by Thapper and Živný. An algebraic necessary condition for tractability of a general-valued CSP with a fixed constraint language was recently given by Kozik and Ochremiak. As our main result, we prove that if a constraint language satisfies this algebraic necessary condition, and the feasibility CSP (i.e., the problem of deciding whether a given instance has a feasible solution) corresponding to the VCSP with this language is tractable, then the VCSP is tractable. The algorithm is a simple combination of the assumed algorithm for the feasibility CSP and the standard LP relaxation. As a corollary, we obtain that a dichotomy for ordinary CSPs would imply a dichotomy for general-valued CSPs.
Publishing Year
Date Published
2017-06-29
Journal Title
SIAM Journal on Computing
Volume
46
Issue
3
Page
1087 - 1110
IST-REx-ID
644

Cite this

Kolmogorov V, Krokhin A, Rolinek M. The complexity of general-valued CSPs. SIAM Journal on Computing. 2017;46(3):1087-1110. doi:10.1137/16M1091836
Kolmogorov, V., Krokhin, A., & Rolinek, M. (2017). The complexity of general-valued CSPs. SIAM Journal on Computing. SIAM. https://doi.org/10.1137/16M1091836
Kolmogorov, Vladimir, Andrei Krokhin, and Michal Rolinek. “The Complexity of General-Valued CSPs.” SIAM Journal on Computing. SIAM, 2017. https://doi.org/10.1137/16M1091836.
V. Kolmogorov, A. Krokhin, and M. Rolinek, “The complexity of general-valued CSPs,” SIAM Journal on Computing, vol. 46, no. 3. SIAM, pp. 1087–1110, 2017.
Kolmogorov V, Krokhin A, Rolinek M. 2017. The complexity of general-valued CSPs. SIAM Journal on Computing. 46(3), 1087–1110.
Kolmogorov, Vladimir, et al. “The Complexity of General-Valued CSPs.” SIAM Journal on Computing, vol. 46, no. 3, SIAM, 2017, pp. 1087–110, doi:10.1137/16M1091836.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]

Link(s) to Main File(s)
Access Level
OA Open Access
Material in ISTA:
In other Relation

Export

Marked Publications

Open Data ISTA Research Explorer

Search this title in

Google Scholar