An efficient projection-type method for monotone variational inequalities in Hilbert spaces
Shehu Y, Li X-H, Dong Q-L. 2020. An efficient projection-type method for monotone variational inequalities in Hilbert spaces. Numerical Algorithms. 84, 365–388.
Download
Journal Article
| Published
| English
Scopus indexed
Author
Shehu, YekiniISTA ;
Li, Xiao-Huan;
Dong, Qiao-Li
Department
Abstract
We consider the monotone variational inequality problem in a Hilbert space and describe a projection-type method with inertial terms under the following properties: (a) The method generates a strongly convergent iteration sequence; (b) The method requires, at each iteration, only one projection onto the feasible set and two evaluations of the operator; (c) The method is designed for variational inequality for which the underline operator is monotone and uniformly continuous; (d) The method includes an inertial term. The latter is also shown to speed up the convergence in our numerical results. A comparison with some related methods is given and indicates that the new method is promising.
Publishing Year
Date Published
2020-05-01
Journal Title
Numerical Algorithms
Acknowledgement
The research of this author is supported by the ERC grant at the IST.
Volume
84
Page
365-388
ISSN
eISSN
IST-REx-ID
Cite this
Shehu Y, Li X-H, Dong Q-L. An efficient projection-type method for monotone variational inequalities in Hilbert spaces. Numerical Algorithms. 2020;84:365-388. doi:10.1007/s11075-019-00758-y
Shehu, Y., Li, X.-H., & Dong, Q.-L. (2020). An efficient projection-type method for monotone variational inequalities in Hilbert spaces. Numerical Algorithms. Springer Nature. https://doi.org/10.1007/s11075-019-00758-y
Shehu, Yekini, Xiao-Huan Li, and Qiao-Li Dong. “An Efficient Projection-Type Method for Monotone Variational Inequalities in Hilbert Spaces.” Numerical Algorithms. Springer Nature, 2020. https://doi.org/10.1007/s11075-019-00758-y.
Y. Shehu, X.-H. Li, and Q.-L. Dong, “An efficient projection-type method for monotone variational inequalities in Hilbert spaces,” Numerical Algorithms, vol. 84. Springer Nature, pp. 365–388, 2020.
Shehu Y, Li X-H, Dong Q-L. 2020. An efficient projection-type method for monotone variational inequalities in Hilbert spaces. Numerical Algorithms. 84, 365–388.
Shehu, Yekini, et al. “An Efficient Projection-Type Method for Monotone Variational Inequalities in Hilbert Spaces.” Numerical Algorithms, vol. 84, Springer Nature, 2020, pp. 365–88, doi:10.1007/s11075-019-00758-y.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Main File(s)
File Name
ExtragradientMethodPaper.pdf
359.65 KB
Access Level
Open Access
Date Uploaded
2019-10-01
MD5 Checksum
bb1a1eb3ebb2df380863d0db594673ba
Export
Marked PublicationsOpen Data ISTA Research Explorer